K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2018

Đặt: 

\(x^3+ax+b=\left(x+1\right)q\left(x\right)+7\left(1\right)\)

\(x^3+ax+b=\left(x-3\right)p\left(x\right)-5\left(2\right)\)

Thay x = -1 và x = 3 lần lượt vào (1) và (2), ta có: 

\(\hept{\begin{cases}-1-a+b=7\\27+3a+b=-5\end{cases}\Rightarrow\hept{\begin{cases}-a+b=8\\3a+b=-32\end{cases}\Rightarrow}\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)

23 tháng 3 2016

Đặt phép chia ra bạn nhé [như kiểu chia STN ấy]

Rùi đến cuối bạn đặt dư tùy theo đa thức chia là x+1 hay x-3

17 tháng 8 2020

a) Đặt \(A\left(x\right)=x^4-9x^3+ax^2+x+b\)

Vì \(A\left(x\right)\) chia hết cho \(x^2-x-2\) nên :

\(A\left(x\right)=\left(x^2-x-2\right).Q\left(x\right)\)

\(\Leftrightarrow A\left(x\right)=\left(x-2\right)\left(x+1\right)Q\left(x\right)\) (*)

Lần lượt thay \(x=2,x=-1\) vào (*) ta có :

\(\hept{\begin{cases}2^4-9.2^3+a.2^2+2+b=0\\\left(-1\right)^4-9.\left(-1\right)^3+\left(-1\right)^2.a+\left(-1\right)+b=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4a+b=54\\a+b=-9\end{cases}\Leftrightarrow}\hept{\begin{cases}a=21\\b=-30\end{cases}}\)

b) Đặt \(B\left(x\right)=x^3+ax+b\)

Vì \(B\left(x\right):\left(x+1\right)\) dư 7 nên : \(B\left(x\right)=\left(x+1\right).H\left(x\right)+7\)

Thay \(x=-1\) vào thì ta có : \(\left(-1\right)^3+a.\left(-1\right)+b=7\Leftrightarrow b-a=8\) (1)

Vì \(B\left(x\right):\left(x-3\right)\) dư -5 nên : \(B\left(x\right)=\left(x-3\right).G\left(x\right)-5\)

Thay \(x=3\) vào thì ta có : \(3^3+3a+b=-5\Leftrightarrow3a+b=-32\) (2)

Từ (1) và (2) suy ra \(\hept{\begin{cases}a=-10\\b=-2\end{cases}}\)

c) Đặt \(C\left(x\right)=ax^3+bx^2+c\)

Vì \(C\left(x\right)⋮x+2\Rightarrow C\left(x\right)=\left(x+2\right).Y\left(x\right)\)

Với \(x=-2\) thì \(\left(-2\right)^3.a+\left(-2\right)^2.b+c=0\)

\(\Leftrightarrow-8a+4b+c=0\) (3)

Lại có : \(C\left(x\right):\left(x^2-1\right)\) thì dư \(x+5\) nên :

\(C\left(x\right)=\left(x^2-1\right).K\left(x\right)+\left(x+5\right)=\left(x-1\right)\left(x+1\right).K\left(x\right)+x+5\)

Với \(x=1\) thì ta có : \(a+b+c=1+5=6\) (4)

Với \(x=-1\) thì ta có : \(-a+b+c=-1+5=4\) (5)

Từ (3) ; (4) và (5) suy ra : \(\hept{\begin{cases}-8a+4b+c=0\\a+b+c=6\\-a+b+c=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}}\)

6 tháng 11 2018

+ \(x^3+ax+b=\left(x+1\right)\cdot P\left(x\right)+7\)

( trong đó P(x) là thương khi chia \(x^3+ax+b\) cho 7 )

Do đó với x = -1 thì -1 - a + b = 7

=> b - a = 8 (1)

\(x^3+ax+b=\left(x-3\right)\cdot Q\left(x\right)-5\)

( Q(x) là thương khi chia \(x^3+ax+b\) cho x - 3 )

Do đó với x = 3 thì : 27 + 3a + b = -5

=> 3a + b = -32 (2)

+ Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}a=-10\\b=-2\end{matrix}\right.\)

Cái này cũng là định lý Bê - du luôn đó bn

+ Số dư khi chia đa thức f(x) cho nhị thức x - a bằng giá trị của đa thức f(x) tại x = a

Như vậy áp dụng vào bài toán trên thì :

\(f\left(x\right)=x^3+ax+b\) chia x - (- 1) dư 7

=> f(-1) = 7

22 tháng 10 2018

undefinedundefinedMời các god xơi câu c

DD
25 tháng 10 2021

\(f\left(x\right)=x^3+ax+b\)

\(f\left(x\right)\)chia \(x+1\)dư \(7\)nên \(f\left(-1\right)=7\)

\(f\left(x\right)\)chia \(x-3\)dư \(5\)nên \(f\left(3\right)=5\)

\(\hept{\begin{cases}-1-a+b=7\\27+3a+b=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-\frac{15}{2}\\b=\frac{1}{2}\end{cases}}\)

7 tháng 8 2018

 a) Có : 3x\(^2\)+ax + 27 : x+5 dư 2

=> 3x\(^2\) + ax + 27 = (x+5) . A(x) +2 với mọi x

=> 3x\(^2\)+ax+ 25 = (x+5) .A (x) với mọi x

Với x = -5 ta có :

3.(-5)\(^2\)+a(-5) +25= (-5+5).A(-5)

=> 100 + a(-5) = 0

=> a= 20

Vậy a= 20 thì \(3x^2\) + ax+27 chia x+5 dư 2

7 tháng 8 2018

a) thuc hien phep chia \(3x^2+ax+27\)chia cho x+5 co thuong la 3x+(a-5) va so du la 102-5a

\(\Rightarrow102-5a=2\Rightarrow a-20\)

b) thuc hien phep chia \(2x^2+ax+1\)chia cho x-3 cho thuong la 2x+(a+6) va so du la 19+3a

\(\Rightarrow19+3a=1\Rightarrow a=-6\)

5 tháng 8 2018

c)

Gọi đa thức \(ax^3+bx^2+c\)\(f\left(x\right)\).

Theo bài ra \(f\left(x\right)⋮x+2\) , ta có phương trình:

\(f\left(-2\right)=-8a+4b+c=0\)(1)

Gọi \(Q\left(x\right)\) là thương của đa thức \(f\left(x\right)\) khi chia \(x^2-1\) được dư là \(x+5\). Ta có:

\(f\left(x\right)=ax^3+bx^2+cx=\left(x^2-1\right).Q\left(x\right)+x+5\)(*)

Nghiệm của \(x^2-1\)\(1\)\(-1\). Thay nghiệm x=1 và x=-1 vào (*), ta có :

\(\left\{{}\begin{matrix}a.\left(-1\right)^3+b\left(-1\right)^2+c=0.Q\left(x\right)+\left(-1\right)+5=4\\a.1^3+b.1^2+c=0.Q\left(x\right)+1+5=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b+c=4\left(2\right)\\a+b+c=6\left(3\right)\end{matrix}\right.\)

Từ (1), (2) và (3), ta có HPT:

\(\left\{{}\begin{matrix}-8a+4b+c=0\\-a+b+c=4\\a+b+c=6\end{matrix}\right.\)

Giải HPT ta được:

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=4\end{matrix}\right.\)

Vậy a=1;b=1 và c=4

5 tháng 8 2018

b)

Gọi đa thức \(x^3+ax+b\)\(f\left(x\right)\)

Gọi \(P\left(x\right)\) là thương khi chia đa thức \(f\left(x\right)\) cho \(x+1\) được dư 7.

Gọi \(Q\left(x\right)\) là thương khi chia đa thức \(f\left(x\right)\) cho \(x-3\) dư -5.

Theo bài ra ta có PT:

\(\left\{{}\begin{matrix}x^3+ax+b=\left(x+1\right).P\left(x\right)+7\\x^3+ax+b=\left(x-3\right).Q\left(x\right)+\left(-5\right)\end{matrix}\right.\)(*)

Nghiệm của x+1 là -1 và nghiệm của x-3 là 3. Thay nghiệm x=-1 và x=3 vào (*) ta được:

\(\left\{{}\begin{matrix}\left(-1\right)^3+a\left(-1\right)+b=0.P\left(x\right)+7=7\\3^3+a3+b=0.Q\left(x\right)-5=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1-a+b=-7\\27+3a+b=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=8\\3a+b=-32\end{matrix}\right.\)

Giải HPT ta được:

\(\Leftrightarrow\left\{{}\begin{matrix}a=-10\\b=-2\end{matrix}\right.\)

Vậy a=-10, b=-2