K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

a) f(5) = 2; f(1) = 0; f(0) không tồn tại; f(-1) không tồn tại.

b) Để hàm số được xác định thì \(x-1\ge0\Leftrightarrow x\ge1\)

c) Gọi x0 là số bất kì thỏa mãn \(x\ge1\). Khi đó ta có:

 \(h\left(x_0\right)=f\left[\left(x_0+1\right)-1\right]-f\left(x_0-1\right)=\sqrt{x_0}-\sqrt{x_0-1}\)  

\(h\left(x_0\right)\left[f\left(x_0+1\right)+f\left(x_0\right)\right]=\left(\sqrt{x_0}-\sqrt{x_0-1}\right)\left(\sqrt{x_0}+\sqrt{x_0-1}\right)=x_0-\left(x_0-1\right)=1>0\)

Vì \(\sqrt{x_0}+\sqrt{x_0-1}>0\Rightarrow h\left(x_0\right)>0\)

Vậy thì với các giá trị \(x\ge1\) thì hàm số đồng biến.

a: f(x)=3x^2

a=3>0

=>Hàm số đồng biến khi x>0 và nghịch biến khi x<0

b: f(1)=f(-1)=3*1^2=3

f(2)=3*2^2=12

f(-4)=3*(-4)^2=48

c: f(x)=48

=>x^2=48/3=16

=>x=4 hoặc x=-4

d; loading...

15 tháng 11 2023

a: Thay x=1 và y=2 vào \(y=f\left(x\right)=ax^2\), ta được:

\(a\cdot1^2=2\)

=>a*1=2

=>a=2

=>\(y=2x^2\)

b: bảng giá trị:

x-2-1012
\(y=2x^2\)82028

 

Đồ thị:

loading...

a: ĐKXĐ: (x+4)(x-1)<>0

hay \(x\notin\left\{-4;1\right\}\)

b: \(y-3=\dfrac{2x^2+6\sqrt{\left(x^2+1\right)\left(x-2\right)}+5-3x^2-9x+12}{x^2+3x-4}\)

\(=\dfrac{-x^2-9x+17+6\sqrt{\left(x^2+1\right)\left(x-2\right)}}{x^2+3x-4}< =0\)

=>y<=3

27 tháng 7 2017

Ta có \(f\left(x\right)+2f\left(\frac{1}{x}\right)=x\left(1\right)\)

Lại có  \(f\left(\frac{1}{x}\right)+2f\left(x\right)=\frac{1}{x}\Rightarrow2f\left(\frac{1}{x}\right)+4f\left(x\right)=\frac{2}{x}\left(2\right)\)

Lấy (2)-(1) ta có \(2f\left(\frac{1}{x}\right)+4f\left(x\right)-2f\left(\frac{1}{x}\right)-f\left(x\right)=\frac{1}{x}-x\)

\(\Rightarrow3f\left(x\right)=\frac{2-x^2}{x}\Rightarrow f\left(x\right)=\frac{2-x^2}{3x}\)

Vậy \(f\left(x\right)=\frac{2-x^2}{3x}\)