Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left|f\left(0\right)\right|=\left|c\right|\le k.\)
\(\left|f\left(1\right)\right|=\left|a+b+c\right|\le k\Leftrightarrow-k\le a+b+c\le k.\)(1)
\(\left|f\left(-1\right)\right|=\left|a-b+c\right|=\left|-a+b-c\right|\le k\Leftrightarrow-k\le-a+b-c\le k\).(2)
Cộng lần lượt các vế của (1) và (2) ta có: \(-2k\le2b\le2k\Leftrightarrow-k\le b\le k\Leftrightarrow\left|b\right|\le k.\)
Mặt khác ta có: \(\hept{\begin{cases}-k\le a+b+c\le k\\-k\le a-b+c\le k\end{cases}\Rightarrow-2k\le2a+2c\le2k\Leftrightarrow-k\le a+c\le k.}\)
Chọn c = k thì \(-k\le a+k\Leftrightarrow-2k\le a.\)
Chọn c = k thì \(a-k\le k\Leftrightarrow a\le2k.\) Vậy \(\left|a\right|\le2k\).
Ta có: \(\left|a\right|+\left|b\right|+\left|c\right|\le2k+k+k=4k\left(đpcm\right).\)
Nguyễn Thanh Hằng,nguyen van tuan,Nguyễn Huy Tú,Ace Legona,... giúp mk vs
Đầu tiên ta chứng minh: \(\left|a\right|\le1,\left|b\right|\le1,\left|c\right|\le1\)Lời giải em tham khảo tại đây http://olm.vn/hoi-dap/question/709608.html.
Phần chứng minh |a|< 1 phải chọn c khéo chút xíu.
Do \(\left|f\left(x\right)\right|\ge7\) nên \(\left|4a+2b+c\right|\ge7\).
Mà \(\left|4a+2b+c\right|\le\left|4a\right|+\left|2b\right|+\left|c\right|\le7.\)
Dấu bằng xảy ra khi a = b = c = 1.
cái trên thì bn dùng BĐT Bunhiakovshi nha
cái dưới hơi rườm tí mik ko bt lm đúng ko
\(f\left(x\right)=x\left(x+1\right)\left(x+2\right)\left(ax+b\right)\)
\(f\left(x-1\right)=\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)\)
\(\Rightarrow f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(x+2\right)\left(ax+b\right)-\)
\(\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)\)
\(=x\left(x+1\right)\left[\left(x+2\right)\left(ax+b\right)-\left(x-1\right)\left(ax-a+b\right)\right]\)
\(=x\left(x+1\right)[x\left(ax+b\right)+2\left(ax+b\right)-x\left(ax-a+b\right)\)
\(+\left(ax-a+b\right)]\)
\(=x\left(x+1\right)(ax^2+bx+2ax+2b-ax^2+ax\)
\(-bx+ax-a+b)\)
\(=x\left(x+1\right)\left(4ax-a+3b\right)\)
Mà theo đề \(f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(2x+1\right)\)
Đồng nhất hệ số là ra
\(f\left(x-1\right)=\left(x-1\right)\left(x\right)\left(x+1\right)\left(ax-a+b\right)\)
=> \(f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(2x+1\right)\)mọi x
\(\Leftrightarrow x\left(x+1\right)\left(x+2\right)\left(ax+b\right)-\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)=x\left(x+1\right)\left(2x+1\right)\)mọi x
\(\Leftrightarrow x\left(x+1\right)\left[\left(x+2\right)\left(ax+b\right)-\left(x-1\right)\left(ax-a+b\right)\right]=x\left(x+1\right)\left(2x+1\right)\)mọi x
\(\Leftrightarrow ax^2+2ax+bx+2b-ax^2+ax-bx+ax-a+b=2x+1\)mọi x
\(\Leftrightarrow4ax+3b-a=2x+1\)
Cân bằng hệ số :
\(\hept{\begin{cases}4a=2\\3b-a=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{1}{2}\end{cases}}\)
a) Ta có $$\begin{aligned} f(x)-f(x-1) & =x(x+1)(x+2)(ax+b)-(x-1)x(x+1)(ax+b) \\ & = 4ax^3+3(a+b)x^2+(3b-a)x \end{aligned}$$
Và $x(x+1)(2x+1)=2x^3+3x^2+x$
Vậy $$4ax^3+3(a+b)x^2+(3b-a)x = 2x^3+3x^2+x \iff \begin{cases} 4a=2 \\ 3(a+b)=3 \\ 3b-a=1 \end{cases} \implies a=b= \dfrac{1}{2}$$
b) Ta có
$$\begin{array}{l}1.2.3= f(1)-f(0) \\ 2.3.5=f(2)-f(1) \\ 3.4.7= f(3)-f(2) \\ ... \\ n(n+1)(2n+1)=f(n)-f(n-1) \end{array}$$
$$\implies S=1.2.3+2.3.5+.....+n(n+1)(2n+1)= f(n-1)-f(0)= \boxed{\dfrac{(n-1)n(n+1)^2}{2}}$$
f(-1)=1-a+b; f(0)=b; f(1)=1+a+b
theo giả thiết có: \(\hept{\begin{cases}\frac{-1}{2}\le b\le\frac{1}{2}\left(1\right)\\\frac{-1}{2}\le1-a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le-a+b\le\frac{-1}{2}\left(2\right)\\\frac{-1}{2}\le1+a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le a+b\le\frac{-1}{2}\left(3\right)\end{cases}}\)
cộng theo từng vế của (2) và (3) có: \(\frac{-3}{2}\le b\le\frac{-1}{2}\left(4\right)\)
từ (1) và (4) ta có: \(b=\frac{-1}{2}\), thay vào (2) và (3) ta được a=0
vậy đa thức cần tìm là \(f\left(x\right)=x^2-\frac{1}{2}\)
+)\(\left|f\left(x\right)\right|\le\frac{1}{2}\Leftrightarrow-\frac{1}{2}\le f\left(x\right)\le\frac{1}{2}\)
+)\(x^2+ax+b=x^2+2\cdot\frac{a}{2}\cdot x+b+\frac{a^2}{4}-\frac{a^2}{4}+b=\left(x+\frac{a}{2}\right)^2+b-\frac{a^2}{4}\)
\(\ge b-\frac{a^2}{4}=-\frac{1}{2}\)
+)\(f\left(x\right)\)có đồ thị quay lên nên đạt giá trị lớn nhất khi x=1 hoặc x=-1
+) Khi x=1 thì \(a+b+1=\frac{1}{2}\Leftrightarrow a+b=-\frac{1}{2}\)
+) Khi x=-1 thì \(b-a+1=\frac{1}{2}\Leftrightarrow b-a=-\frac{1}{2}\)
+) TH1: \(\hept{\begin{cases}a+b=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)
+) TH2: \(\hept{\begin{cases}b-a=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)
Vậy a=0, b=1/2
P/s: Bài này mình không chắc chắn lắm nhé!