K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Đặt \(f\left(x\right)=ax^2+bx+c.\)Ta có

\(f\left(x-1\right)=a\left(x-1\right)^2+b\left(x-1\right)+c=a\left(x^2-2x+1\right)+bx-b+c\)

\(\Leftrightarrow f\left(x-1\right)=ax^2-2ã+a+bx-b+c\)

\(\Leftrightarrow x^2+3x+2=ax^2+\left(b-2a\right)x+\left(a-b+c\right)\)

\(\Rightarrow\hept{\begin{cases}a=1\\b-2a=3\\a-b+c=2\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=5\\c=6\end{cases}}}\)

Vậy \(f\left(x\right)=x^2+5x+6\)

10 tháng 1 2021

\(f\left(x\right)=ax^2+bx+c\)

=> \(f\left(-2\right)=4a-2b+c=-3\)

Có f(x) chia cho x và x + 4 đều dư 5

=> \(\left\{{}\begin{matrix}f\left(0\right)=0+c=5\\f\left(-4\right)=16a-4b+c=5\end{matrix}\right.\)

Ta có hpt:

\(\left\{{}\begin{matrix}4a-2b+c=-3\\c=5\\16a-4b+c=5\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}c=5\\2\left(2a-b\right)=-8\\4\left(4a-b\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=5\\b=4a\\2a-b=-4\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=8\\c=5\end{matrix}\right.\)

Khi đó \(f\left(x\right)=2x^2+8x+5\)

 

4 tháng 8 2017

dạng: \(ax^2+bx+c\)

f(1)=a+b+c=1

f(-1)=a-b+c=5

f(2)=4a+2b+c=5

giải hệ 3 phương trình ta được a=2,b=-2,c=1=>\(2x^2-2x+1\)

7 tháng 2 2018

Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.

7 tháng 11 2020

Đặt F(x) = ax3 + bx2 + cx + d ( a ≠ 0 )

F(x) chia ( x - 1 ) ; ( x - 2 ) ; ( x - 3 ) đều dư 6

=> F(x) - 6 chia hết cho ( x - 1 ) ; ( x - 2 ) ; ( x - 3 )

<=> ax3 + bx2 + cx + d - 6 chia hết cho ( x - 1 ) ; ( x - 2 ) ; ( x - 3 )

Đến đây ta áp dụng định lí Bézoute :

F(x) - 6 chia hết cho x - 1 <=> F(1) = 0

<=> a + b + c + d - 6 = 0

<=> a + b + c + d = 6 (1)

F(x) - 6 chia hết cho x - 2 <=> F(2) = 0

<=> 8a + 4b + 2c + d - 6 = 0

<=> 8a + 4b + 2c + d = 6 (2)

F(x) - 6 chia hết cho x - 3 <=> F(3) = 0

<=> 27a + 9b + 3c + d - 6 = 0

<=> 27a + 9b + 3c + d = 6 (3)

F(-1) = -18

<=> -a + b - c + d = -18 (4)

Từ (1), (2), (3), (4) => \(\hept{\begin{cases}a+b+c+d=8a+4b+2c+d=27a+9b+3c+d=6\\-a+b-c+d=-18\end{cases}}\)

< Để giải hệ này xài máy 580VN X, Menu -> 9 -> 1 -> 4 >

Giải hệ ta được a = 1 ; b = -6 ; c = 11 ; d = 0

=> F(x) = x3 - 6x2 + 11x

4 tháng 10 2019

a) Ta có: \(g\left(x\right)=x^2-3x+2\)

                          \(=x^2-x-2x+2\)

                            \(=x\left(x-1\right)-2\left(x-1\right)\)

                           \(=\left(x-1\right)\left(x-2\right)\)

Vì \(f\left(x\right)⋮g\left(x\right)\)

\(\Rightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)q\left(x\right)\)

\(\Rightarrow\hept{\begin{cases}f\left(1\right)=\left(1-1\right)\left(1-2\right)q\left(1\right)=0\left(1\right)\\f\left(2\right)=\left(1-2\right)\left(2-2\right)q\left(2\right)=0\left(2\right)\end{cases}}\)

Từ \(\left(1\right)\Leftrightarrow1^4-3.1^3+1^2+a+b=0\)

\(\Leftrightarrow-1+a+b=0\)

\(\Leftrightarrow a+b=1\left(3\right)\)

Từ \(\left(2\right)\Leftrightarrow2^4-3.2^3+2^2+2a+b=0\)

\(\Leftrightarrow-4+2a+b=0\)

\(\Leftrightarrow2a+b=4\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrow\hept{\begin{cases}a+b=1\\2a+b=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=3\\b=-2\end{cases}}}\)

Vậy a=3 và b=-2 để \(f\left(x\right)⋮g\left(x\right)\)

Các phần sau tương tự

2 tháng 7 2015

bạn xem lại đề cho  f(x)

31 tháng 1 2020

Gọi đa thức bậc ba đó là \(F\left(x\right)=ax^3+bx^2+cx+d\)

\(\Rightarrow F\left(-1\right)=-a+b-c+d=-18\)

F(x) cho x -1; x - 2; x - 3 đều có số dư là 6\(\Rightarrow\hept{\begin{cases}ax^3+bx^2+cx+\left(d-6\right)⋮x-1\\ax^3+bx^2+cx+\left(d-6\right)⋮x-2\\ax^3+bx^2+cx+\left(d-6\right)⋮x-3\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}F\left(1\right)=0\\F\left(2\right)=0\\F\left(3\right)=0\end{cases}}\)(định lý Bezout)

\(\Rightarrow\hept{\begin{cases}a+b+c+\left(d-6\right)=0\\8a+4b+2c+\left(d-6\right)=0\\27a+9b+3c+\left(d-6\right)=0\end{cases}}\)

Tịt rồi)): Trưa về suy nghĩ tiếp

7 tháng 2 2018

Em tham khảo bài tương tự tại đây nhé.

Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath