Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là phương pháp đồng nhất hạng tử (cách này hơi khó hiểu vì dành cho lớp chuyên toán hoặc đội tuyển)
sau khi lấy x4+ax+b chia cho x2-1 ta được x2+1 dư ax+b+1
ta có x4+ax+b = (x2-1)(x2+cx+d)
=>x4+ax+b=x4+cx3+dx2-x2-cx-d
Tương đương bậc của 2 bên ( ko cần ghi bậc chỉ cần ghi hệ số)
x4 =x4 => 0
0x3 =cx3 => c=0
0x2=(d-1)x2 => d-1 = 0 ( lấy x2 chung)
ax=-cx => a=-c
b=-d
Từ những điều trên ta kết luận
a=0 (a=-c mà c=0)
b=1 (b=-d mà d=1)
x4 + ax + b\(⋮\)x2 - 4
<=> x4 + ax + b\(⋮\)( x - 2 ) ( x + 2 )
<=>\(\hept{\begin{cases}x^4+ax+b⋮x-2\\x^4+ax+b⋮x+2\end{cases}}\)
Đặt f ( x ) = x4 + ax + b
Theo định lý Bezout về phép chia đa thức, số dư của f ( x ) = x4 + ax + b cho x - 2 ; x + 2 lần lượt là f ( 2 ) ; f ( - 2 )
Để phép chia là chia hết thì\(\hept{\begin{cases}f\left(2\right)=16+2a+b=0\\f\left(-2\right)=-16-2a+b=0\end{cases}}\)
<=>\(\hept{\begin{cases}2a+b=-16\left(1\right)\\-2a+b=16\left(2\right)\end{cases}}\)
Lấy ( 1 ) - ( 2 ) ta được : 4a = 0 <=> a = 0
Thay a = 0 vào ( 1 ) ta được : 0 + b = - 16 <=> b = - 16
Vậy \(\hept{\begin{cases}a=0\\b=-16\end{cases}}\)
Đặt f(x) = x^4 + ax^3 + bx +b
xét f(-1)=0 và f(1) =0(vì f(x) chia hết cho a khi f(a) =0)
f(-1) = 1 - a -b + b = 1-a =0
+
f(1) = 1+a+b+b = 1+a+2b = 0
-------------------------------------------
=> 2+2b = 0
=> b= -1
=> 1+a-2 = 0
=> a=1