K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 3 2020

\(P\left(-1\right)=a-b\) ; \(P\left(-2\right)=4a-2b=5a-3b-a+b=b-a\)

\(\Rightarrow P\left(-1\right).P\left(-2\right)=\left(a-b\right)\left(b-a\right)=-\left(a-b\right)^2\le0\) \(\forall a;b\)

Giúp mik đi ạ chiều phải nộp rùi nì

khocroi

25 tháng 2 2019

a,M=\(^{x3}\)+2\(^{x2}\)-1

b, Bậc của đa thức là 3

21 tháng 1 2017

a)\(x^2+\left(y-\frac{1}{10}\right)^4=0\)

Ta thấy: \(\left\{\begin{matrix}x^2\ge0\\\left(y-\frac{1}{10}\right)^4\ge0\end{matrix}\right.\)

\(\Rightarrow x^2+\left(y-\frac{1}{10}\right)^4\ge0\)

\(x^2+\left(y-\frac{1}{10}\right)^4=0\)

Xảy ra khi \(\left\{\begin{matrix}x^2=0\\\left(y-\frac{1}{10}\right)^4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=0\\y=\frac{1}{10}\end{matrix}\right.\)

21 tháng 1 2017

b)\(\left(x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)

Ta thấy: \(\left\{\begin{matrix}\left(x-5\right)^{20}\ge0\\\left(y^2-\frac{1}{4}\right)^{10}\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)

\(\left(x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)

Suy ra \(\left\{\begin{matrix}\left(x-5\right)^{20}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x-5=0\\y^2-\frac{1}{4}=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=5\\y=\pm\frac{1}{2}\end{matrix}\right.\)

Câu 1:

a)

Ta có: \(P\left(x\right)=5x^4+3x^3-6x+x^2-5x^4+2x+8\)

\(=3x^3+x^2-4x+8\)

Ta có: \(Q\left(x\right)=2x^2-3x^3+12-3x^2+6x^3-4\)

\(=-3x^3-x^2+8\)

b) Ta có: P(x)+Q(x)

\(=3x^3+x^2-4x+8-3x^3-x^2+8\)

\(=-4x+16\)

Ta có: H(x)+P(x)=Q(x)

⇔H(x)=Q(x)-P(x)

\(\Leftrightarrow H\left(x\right)=-3x^3-x^2+8-\left(3x^3+x^2-4x+8\right)\)

\(\Leftrightarrow H\left(x\right)=-3x^3-x^2+8-3x^3-x^2+4x-8\)

\(\Leftrightarrow H\left(x\right)=-6x^3-2x^2+4x\)

c) Đặt H(x)=0

\(\Leftrightarrow-6x^3-2x^2+4x=0\)

\(\Leftrightarrow x\left(-6x^2-2x+4\right)=0\)

\(\Leftrightarrow x\left(-6x^2-6x+4x+4\right)=0\)

\(\Leftrightarrow x\left[-6x\left(x+1\right)+4\left(x+1\right)\right]=0\)

\(\Leftrightarrow x\cdot\left(x+1\right)\cdot\left(-6x+4\right)=0\)

\(\Leftrightarrow-2\cdot\left(3x-2\right)\cdot x\cdot\left(x+1\right)=0\)

\(-2\ne0\)

nên \(\left[{}\begin{matrix}3x-2=0\\x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\x=0\\x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=0\\x=-1\end{matrix}\right.\)

Vậy: Nghiệm của đa thức H(x) lần lượt là 0;-1;\(\frac{2}{3}\)

Câu 2: Sửa đề: \(C=4x^2+7xy-3y^2\)

Ta có: A+B+C

=\(7x^2-12xy+9y^2+5-10x^2+7xy-5y^2+4x^2+7xy-3y^2\)

\(=x^2+2xy+y^2+5\)

\(=\left(x+y\right)^2+5>0\forall x,y\)(đpcm)

2 tháng 6 2020

Bạn ơi bên trên mik viết nhầm câu 2 phần C = 4x\(^2\) + 7xy + 5y\(^2\)

AH
Akai Haruma
Giáo viên
22 tháng 6 2020

Lời giải:
Gọi $t$ là nghiệm chung của 2 đa thức $P(x); Q(x)$

Ta có:

$t^4+at^2+1=0(1)$

$t^3+at+1=0\Rightarrow t^4+at^2+t=0(2)$

Lấy $(2)$ trừ $(1)$ theo vế ta thu được:

$t-1=0\Rightarrow t=1$

Thay ngược lại vào $(1)$ thì:

$1^4+a.1^2+1=0\Rightarrow a=-2$

Vậy $a=-2$ thì 2 đa thức trên có nghiệm chung.

a) Ta thấy \(\left|x-2\right|\ge0\) ; \(\left|y-1\right|\ge0\)

\(\Rightarrow\left|x-2\right|+\left|y-1\right|\ge0\)\(\left|x-2\right|+\left|y-1\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y-1=0\end{matrix}\right.\) Tự tính tiếp

18 tháng 10 2018

Đọc được thì cho tui xin lỗi nếu tôi làm bạn giận. Tôi thuộc cung Bạch Dương nên thường ko cân nhắc trước khi nói. Xin lỗi rất nhiều. So sorry...huhu