Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ta có:
x.y=24
x/3=y/2
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{x.y}{3.2}\)
\(=\frac{24}{6}=4\)
\(\Rightarrow x=3.4=12\)
\(\Rightarrow y=2.4=8\)
Đặt \(k=\frac{x}{3}=\frac{y}{2}\)
Suy ra : \(k^2=\frac{x.y}{3.2}=\frac{24}{6}=4\)
Nên : k = -2;2
+ k = -2 thì \(\frac{x}{3}=-2\Rightarrow x=-6\)
\(\frac{y}{2}=-2\Rightarrow x=-4\)
+ k = 2 thì \(\frac{x}{3}=2\Rightarrow x=6\)
\(\frac{y}{2}=2\Rightarrow x=4\)
Vậy ......................
Bài 2 :
Vì tam giác abc có số đo các góc a ,b,c lần lượt tỉ lệ là:3:4:5 .
Nên : \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Tổng 3 góc trong 1 tam giác bằng 180o
Nên : a + b + c = 180
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}==\frac{180}{12}=15\)
Nên : \(\frac{a}{3}=180\Rightarrow a=60\)
\(\frac{b}{4}=180\Rightarrow b=45\)
\(\frac{c}{5}=180\Rightarrow c=36\)
Vậy a = 60 ; b = 45 ; c = 36
Gọi x;y;z lần lượt là các góc của tam giác ABC:
X/3=Y/4=Z/5 và x+y+z=180
Áp dụng tính chất của dãy tỉ số bằng nhau:
X/3=Y/4=Z/5=X+Y+Z/3+4+5=180/12=15
*X/3=15 SUY RA X=3 X 15 = 45
*Y/4=15 SUY RA Y= 4 X 15=60
*Z/5 =15 SUY RA Z=5 X 15 =75
Vây x=45
y=60
z=75
Gọi số đo các góc lần lượt là a , b , c
Theo đề bài ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5};a+b+c=180\)( Định lý tổng 3 góc của tam giác bạn nhé )
Áp dụng tính chất dãy tỉ số bằng nhau ta có ;
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{180}{12}=15\)
\(\Rightarrow\)\(a=15.3=45\)
\(b=15.4=60\)
\(c=15.5=75\)
Vậy số đo các góc của tam giác lần lượt là 45 độ ; 60 độ ; 75 độ
Nếu bạn không tin thì có thể lấy ba số : 45 + 60 + 75 = 180 độ ( đúng bạn nhé )
Bài 1:
Số đo góc ngoài tại đỉnh C là \(74^0+47^0=121^0\)
Câu 2:
Đặt \(\widehat{D}=a;\widehat{E}=b\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=52\\a+b=140\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=96\\b=44\end{matrix}\right.\)
Bài 3:
Theo đề, ta có: x+2x+3x=180
=>6x=180
=>x=30
=>\(\widehat{A}=30^0;\widehat{B}=60^0;\widehat{C}=90^0\)
đề sai bạn ơi, các góc tỉ lệ chứ cạnh cđg
theo đề bài ta có :
A/3 = B/4 = C/5
=> A+B+C/3+4+5 = A/3=B/4=C/5
A+B+C = 180
=> 180/12 = A/3 = B/4 = C/5
=> 15 = A/3 = B/4 = C/5
=> A = 45 ; B = 60; C = 75
Gọi 3k, 4k, 5k lần lượt là các cạnh của tam giác ABC \(\left(k>0;k\inℝ\right)\)
Áp dụng định lí pythagore đảo vào tam giác ABC:
Vì \(\left(5k\right)^2=25k^2=9k^2+16k^2=\left(3k\right)^2+\left(4k\right)^2\)
Suy ra: tam giác ABC là tam giác vuông có độ dài cạnh huyền là 5k, độ dài 2 cạnh góc vuông là 3k, 4k
Với tam giác ABC vuông tại A, thì: \(\widehat{A}=90^0\)
Giả sử: AB = 3k ; AC = 4k
\(\sin B=\frac{AC}{BC}=\frac{4k}{5k}=\frac{4}{5}\Rightarrow\widehat{B}\approx53^0\)
Vì tổng các góc \(\widehat{A}=90^0\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^0\)
\(\Rightarrow\widehat{C}=90^0-\widehat{B}=90^0-53^0=37^0\)
Vậy 3 góc trong tam giác có số đo là: \(90^0;37^0;53^0\)
HỌC TỐT!
A B C X 2 1
Ta có \(\widehat{C_2}=130^o\left(gt\right)\Rightarrow C_1=180^o-C_2=180^o-130^o=50^o\)
Mà \(\widehat{C}=\frac{2}{3}\widehat{B}\Rightarrow\widehat{B}=75^o\)
Vây \(\widehat{C}=50^o;\widehat{B}=75^o\)
dùm mình nha, mình thanks trước
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{3}=\frac{2x}{16}=\frac{3y}{9}=\frac{2x+3y}{16+9}=\frac{50}{25}=2\)
Nên : x/8 = 2 => x = 16
y/3 = 2 => y = 6
Vậy x = 16 ; y = 6 .