Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(M\left(x\right)=4x^2-4x-3x^3-8\)
\(=-3x^3+4x^2-4x-8\)
Ta có: \(N\left(x\right)=2+3x^3+x-4x^2\)
\(=3x^3-4x^2+x+2\)
a) ( - 2 )2 + m . ( - 2 ) + 2 = 0 \(\Leftrightarrow\)m = 3
b) f(x) = x2 + 3x + 2
f(x) có tổng bằng các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ nên f(x) nhận (-1) làm một nghiệm. Như vậy f(x) có 2 nghiệm là (-2) (Theo câu a) và ( -1) ngoài ra không còn nghiệm nào khác vì đa thức bậc hai có nhiều nhất là 2 nghiệm
Do đó tập hợp các nghiệm của f(x) là S = ( -1; -2 )
a) Theo đề f(x) nhận -2 là nghiệm lấy -2 thay vào x ta có:
\(\left(-2\right)^2-2m+2=0\)
\(\Rightarrow4-2m+2=0\)
\(\Rightarrow6-2m=0\)
\(\Rightarrow2m=6\)
\(\Rightarrow m=3\)
b) Tìm được m ta có: \(f\left(x\right)=x^2+3x+2\)
\(\Rightarrow x^2+3x+2=0\)
\(\Rightarrow x^2+2x+x+2=0\)
\(\Rightarrow x\left(x+2\right)+\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của f(x) là: \(S=\left\{-2;-1\right\}\)
a, Thay x = -2, ta có :
f(-2) = (-2 )2 + ( m . -2 ) + 2 = 0
4 + ( -2m ) + 2 = 0
4 - 2m = -2
2m = 6 \(\Rightarrow\)m = 3
b, m = 3 \(\Rightarrow\)f(x) = x2 + 3x + 2
f(x) = 0
\(\Leftrightarrow x^2+3x+2=0\)
\(\Leftrightarrow x^2+2x+x+2=0\)
\(\Leftrightarrow x\left(2+x\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\x=-2\end{cases}}\)
a) (-2)+m.(-2)+2=0 <=> m=3 b) f(x)=x2+3x+2
f(x) có tổng các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ nên f(x) nhận -1 làm một nghiệm.Như vậy f(x) có 2 nghiệm là -2 (theo câu a) và -1 ngoài ra ko còn nghiệm nào khác vì đa thức bậc hai có nhiều nhất là hai nghiệm.Do đó tập hợp các nghiệm của f(x) là S={-1:-2}
a, Để f(x) nhận 3 là nghiệm thì : \(3^2-3m+15=0\)
\(\Leftrightarrow24-3m=0\)
\(\Leftrightarrow m=8\)
b, Với m = 8 thì \(x^2-8x+15=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)
Vậy \(S=\left\{3;5\right\}\)
làm câu b , bài 1 nhé
A =(ghi lại )
=> 2A=2+22+23+24+....+2100+2101
=> 2A - A = A = 2+22+23+24+....+2100+2101 -1 -2-22-23-....-2100
=>A = 2101-1 < 2101
Vậy A < B
Bài 1:
a) \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{19}{9^2.10^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{19}{81.100}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{81}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)
b) Ta có: \(A=2^0+2^1+...+2^{100}\)
\(\Rightarrow2A=2+2^2+...+2^{101}\)
\(\Rightarrow2A-A=2^{101}-2^0\)
\(\Rightarrow A=2^{201}-1< 2^{101}\)
\(\Rightarrow A< B\)
Vậy A < B