Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2x+3y\right)^2=4x^2+12xy+9y^2\)
b) \(\left(x^2+\dfrac{2}{5}y\right)\left(x^2-\dfrac{2}{5}y\right)=\left(x^2\right)^2-\left(\dfrac{2}{5}y\right)^2\)
\(=x^4-\dfrac{4}{25}y^2\)
c) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=\left(x-3y\right)\left[x^2+3y.x+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3=x^3-27y^3\)
d) \(\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)
e) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)=\left(x^2-3\right)\left[\left(x^2\right)^2+3.x^2+3^2\right]\)
\(=\left(x^2\right)^3-3^3=x^6-27\)
chứng minh biểu thức M có giá trị không phụ thuộc x,y =)) Giúp mk vs ạ
Mk xin lỗi nha, câu c sai đề
c) (x+6)4 + (x+8)4 = 272
a.
\(\left(2x-1\right)^3+6\left(3x-1\right)^3=2\left(x+1\right)^3+6\left(x+2\right)^3\)
\(\Leftrightarrow\left(2x\right)^3-3.\left(2x\right)^2.1+3.2x.1+1^3+6.\left[\left(3x\right)^3-3.\left(3x\right)^2.1+3.3x.1+1^3\right]=2\left(x^3+3x^2+3x+1\right)+6\left(x^2+3.x^2.2+3.x.2^2+2^3\right)\)
a) 5x - 15y = 5(x - 3y)
b) \(\dfrac{3}{5}\)x2 + 5x4 - x2 - y
= \(\dfrac{3}{5}\)x2 + 5x2.x2 - x2 - y
= x2(\(\dfrac{3}{5}\) + 5x2 -1) - y
c) 14x2y2 - 21xy2 + 28x2y
= 7xy.xy - 7xy.3y + 7xy.4x
= 7xy(xy - 3y + 4x)
= 7xy[(xy - 3y) + 4x]
= 7xy[y(x - 3) +4x]
d) \(\dfrac{2}{7}x\)(3y - 1) - \(\dfrac{2}{7}y\)(3y - 1)
= (3y - 1).(\(\dfrac{2}{7}x\) - \(\dfrac{2}{7}y\) )
= (3y - 1).[\(\dfrac{2}{7}\)(x - y)]
e) x3 - 3x2 + 3x - 1
= x2.x - 3x.x + 3.x - 1
= x(x2-3x+3) - 1
g) 27x3 + \(\dfrac{1}{8}\)
= (3x)3 + \(\left(\dfrac{1}{2}\right)^3\)
= (3x + \(\dfrac{1}{2}\)).(9x2 - \(\dfrac{3}{2}\)x + \(\dfrac{1}{4}\))
h) (x+y)3 - (x-y)3
= 2(3x2y) + 2y3
f) (x+y)2 - 4x2
= -3x2 + y(2x + y)
a) \(\left(x+4\right)\left(x^2-4x+16\right)\)
\(x^3-4x^2+16x+4x^2-16x+64\)
\(=x^3+64\)
\(=x^3+4^3\)
\(=\left(x+4\right)\left(x^2-4x+16\right)\)
b) \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)
\(=\frac{1}{27}x^3-\frac{2}{9}x^2y+\frac{4}{3}xy^2+\frac{2}{9}x^2y-\frac{4}{3}xy^2+8y^3\)
\(=\frac{1}{27}x^3+8y^3\)
\(=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3\)
\(=\left(\frac{1}{3}x+2y\right)[\left(\frac{1}{3}x\right)^2-(\frac{1}{3}x.2y)+\left(2y\right)^2]\)
\(=\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)
Câu c và d tương tự .
Bài 2:
\(=\dfrac{x^2\left(x^2+4\right)-2x\left(x^2+4\right)}{x^2+4}=x^2-2x\)
Bài 1:
a: \(=\left(\dfrac{2}{3}:\dfrac{-1}{9}\right)\cdot x^4y^2z^6=-6x^4y^2z^6\)
b: \(=-12x^8-21x^5\)
c: =x^3+8
d: \(=125x^3-75x^2+15x-1\)
12: \(\Leftrightarrow\left(\dfrac{4x^2+16-3x^2-18}{x^2+6}\right)=\left(\dfrac{3}{x^2+1}-1\right)+\left(\dfrac{5}{x^2+3}-1\right)+\left(\dfrac{7}{x^2+5}-1\right)\)
=>x2-2=0
hay \(x=\pm\sqrt{2}\)
13: \(\Leftrightarrow x^5-x^4-x^3-x^2-x-2=0\)
\(\Leftrightarrow x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2=0\)
=>x-2=0
=>x=2
\(=x^3+64\\ =x^3-27y^3\\ =x^6-\dfrac{1}{27}\)
\(\left(x+4\right)\left(x^2-4x+16\right)=x^3+64\)
\(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-27y^3\)
\(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=x^6-\dfrac{1}{27}\)