K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2020

\(\frac{x}{40}+\frac{x}{30}=\frac{3}{4}\)

\(< =>\frac{70x}{1200}=\frac{900}{1200}\)

\(< =>\frac{7x}{120}=\frac{9}{120}\)

\(< =>x=\frac{9}{7}\)

Bài làm

\(\frac{x}{40}+\frac{x}{30}=\frac{3}{4}\)

\(\Leftrightarrow\frac{3x}{120}+\frac{4x}{120}=\frac{90}{120}\)

\(\Rightarrow7x=90\)

\(\Leftrightarrow x=\frac{90}{7}\)

Vậy \(x=\frac{90}{7}\)là nghiệm phương trình. 

15 tháng 1 2017

\(A=-x^2+x+30=\left(-x^2+\frac{2x}{2}-\frac{1}{4}\right)+30+\frac{1}{4}\)

\(=\frac{121}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{121}{4}\)

Vậy GTLN là  \(A=\frac{121}{4}\)đạt được khi \(x=\frac{1}{2}\)

mk chịu bn ơi

19 tháng 6 2016

xem lại đề, chỗ 3xy2

20 tháng 6 2016

Ta có:\(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

\(\frac{1}{2}\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)=0\)

\(\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\right]=0\)

\(x+y+z=0\)hoặc \(x=y=z\)(Đpcm)

21 tháng 7 2016

\(a,10^{30}=2^{30}.5^{30}\)

     \(2^{100}=\left(2^{50}\right)^2\)

\(\Rightarrow10^{30}< 2^{100}\)

tt

19 tháng 8 2020

Ta có : \(x^2+x+4=x^2+x+\frac{1}{4}+\frac{15}{4}=\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\left(\forall x\right)\)

+) \(\left(x-1\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

19 tháng 8 2020

\(\left(x-1\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2+x=-4\end{cases}}\)

+) x2 + x = - 4

<=> ( x + 1/2 )2 = - 4 + 1/4 = -15/4

Mà ( x + 1/2 )2 lớn hơn hoặc bằng 0 với mọi x

=> x2 + x + 4 = 0 ktm

Vậy pt = 0 <=> x = 1

2 tháng 10 2021

\(x^2\left(x-3\right)^2-\left(x-3\right)^2-x^2+1\)

\(=\left(x^2-1\right)\left(x-3\right)^2-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x-3-1\right)\left(x-3+1\right)\)

\(=\left(x^2-1\right)\left(x-4\right)\left(x-2\right)\)

DD
25 tháng 12 2022

Thực hiện phép chia đa thức \(f\left(x\right)\) cho \(g\left(x\right)\) ta được

\(x^4-9x^3+21x^2+x+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+a+30\)

Do đó dư của phép chia \(f\left(x\right)\) cho \(g\left(x\right)\) là \(a+30\).

a) Với \(a=-100\) dư của phép chia đa thức \(f\left(x\right)\) và \(g\left(x\right)\) là \(-100+30=-70\).

b) Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(a+30=0\Leftrightarrow a=-30\).