Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}\Leftrightarrow\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{42}\) và \(5x+y-2z=28\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{42}=\dfrac{5x+y-2z}{50+6-42}=\dfrac{28}{14}=2\)
+) \(\dfrac{5x}{50}=2\Rightarrow5x=100\Rightarrow x=20\)
+) \(\dfrac{y}{6}=2\Rightarrow y=12\)
+) \(\dfrac{2z}{42}=2\Rightarrow2z=84\Rightarrow z=42\)
Vậy ...
b, Ta có:
\(3x=2y\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}\)
\(7y=5z\Leftrightarrow\dfrac{y}{5}=\dfrac{z}{7}\)
Ta lại có:
\(\dfrac{x}{2}=\dfrac{y}{3}\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}\left(1\right)\)
\(\dfrac{y}{5}=\dfrac{z}{7}\Leftrightarrow\dfrac{y}{15}=\dfrac{z}{21}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\) và \(x-y+z=32\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)
+) \(\dfrac{x}{10}=2\Rightarrow x=20\)
+) \(\dfrac{y}{15}=2\Rightarrow y=30\)
+) \(\dfrac{z}{21}=2\Rightarrow z=42\)
Vậy ...
a: Đặt x/5=y/7=k
=>x=5k; y=7k
Ta có: xy=70
nên \(35k^2=70\)
\(\Leftrightarrow k^2=2\)
Trường hợp 1: \(k=\sqrt{2}\)
\(\Leftrightarrow x=5\sqrt{2};y=7\sqrt{2}\)
Trường hợp 2: \(k=-\sqrt{2}\)
\(\Leftrightarrow x=-5\sqrt{2};y=-7\sqrt{2}\)
b: Ta có: 5x=3y
nên x/3=y/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x-y}{2\cdot3-5}=11\)
Do đó: x=33; y=55
c: 7x=5y=140
=>x=20; y=28
d: Ta có: 2x=3y
nên x/3=y/2
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được;
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x-2y}{3-2\cdot2}=\dfrac{-7}{-1}=7\)
Do đó: x=21; y=14
b) Tính
\(A=\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}\)
\(=\frac{\left(2^4\right)^3.3^{10}+2^3.3.5.2^9.3^9}{\left(2^2\right)^6.3^{12}+2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}+2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3+1\right)}\)
\(=\frac{2.6}{3.7}=\frac{12}{21}=\frac{4}{7}\)
Vậy : \(A=\frac{4}{7}\)
vì x y tỉ lệ nghịch nên xy =a nên x1y1=a x2y2=a suy ra y1=a/x1 y2=a/x2
nên a2/x12 +a2/x22 = 52 nên a2/4 +a2/9=13a2/36=52
a2=144 nên a = 12 suy ra y1= 6 ,y2 =4
Nhắc lại một chút :
Nếu hai đại lượng tỉ lệ nghịch với nhau thì :
- Tích hai giá trị tương ứng của chúng luôn không đổi ( = hệ số tỉ lệ )
- Tỉ số hai giá trị bất kì của đại lượng này = nghịch đảo của tỉ số hai giá trị tương ứng của đại lượng kia
Ta có x và y là hai đại lượng tỉ lệ nghịch
x1, x2 là hai giá trị của x
y1, y2 là hai giá trị của y
Tích hai giá trị tương ứng của chúng luôn không đổi
tức là x1y1 = x2y2 ; biết x1 = 6, x2 = -9
=> 6y1 = -9y2 => \(\frac{y_1}{\frac{1}{6}}=\frac{y_2}{-\frac{1}{9}}\)và y1 - y2 = 10
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y_1}{\frac{1}{6}}=\frac{y_2}{-\frac{1}{9}}=\frac{y_1-y_2}{\frac{1}{6}-\left(-\frac{1}{9}\right)}=\frac{10}{\frac{5}{18}}=36\)
\(\Rightarrow\hept{\begin{cases}y_1=36\cdot\frac{1}{6}=6\\y_2=36\cdot\left(-\frac{1}{9}\right)=-4\end{cases}}\)
Ta có :
\(\frac{x}{3}=\frac{y}{7}\)
\(\Rightarrow\frac{x^2}{9}=\frac{y^2}{49}\)và \(x^2+y^2=224\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{x^2+y^2}{9+49}=\frac{224}{58}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{49}=4\end{cases}\Rightarrow\hept{\begin{cases}x^2=4.9=36\\y^2=4.49=196\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm6\\y=\pm14\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=6;y=14\\x=-6;y=-14\end{cases}}\)