Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Lỗi nhỏ: Sai ở chỗ: \(\left|x-2+4-3x\right|=\left|-2x-2\right|\)
+) Lỗi lớn: Dấu bằng xảy ra: \(\hept{\begin{cases}\left(x-2\right)\left(4-3x\right)\ge0\\\left(-2x+2\right)\left(2x-3\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{3}{2}\le x\le1\end{cases}}\Leftrightarrow\frac{3}{2}\le x\le1\)( làm tắt )
Nhưng mà thử vào chọn x= 1=> A = 3 > 1. Nên bài này sai.
Làm lại nhé!
A = | x - 2 | + | 2 x - 3 | + | 3 x - 4 |
= | x - 2 | + | 2 x - 3 | + 3 | x - 4/3 |
= | x -2 | + | x - 4/3 | + | 2x -3 | +2 | x - 4/3 |
= ( | 2 - x | + | x - 4/3 | ) + ( | 3 - 2x | + | 2x - 8/3 | )
\(\ge\)| 2 -x + x - 4/3 | + | 3 - 2x + 2x -8/3 |
= 2/3 + 1/3 = 1
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(2-x\right)\left(x-\frac{4}{3}\right)\ge0\\\left(3-2x\right)\left(2x-\frac{8}{3}\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{4}{3}\le x\le\frac{3}{2}\end{cases}}\Leftrightarrow\frac{4}{3}\le x\le\frac{3}{2}\)
\(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)
\(\Rightarrow6x^2-19x-7-6x^2-x+5=16\)
\(\Rightarrow-20x=18\Rightarrow x = -\frac{9}{10}\)
xong rùi nha ^^
\(Q\left(x\right)-P\left(x\right)=0\)
\(\Leftrightarrow\left(-6x^2+x^3-8+12\right)-\left(x^3-3x^2+6x-8\right)=0\)
\(\Leftrightarrow-6x^2+x^3-8+12-x^3+3x^2-6x+8=0\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(3x^2-6x^2\right)-6x+\left(8-8+12\right)=0\)
\(\Leftrightarrow-3x^2-6x+12=0\)
\(\Delta=\left(-6\right)^2-4.\left(-3\right).12=180>0,\sqrt{\Delta}=\sqrt{80}\)
\(x_1=\frac{6-\sqrt{80}}{-6};x_2=\frac{6+\sqrt{80}}{-6}\)
a: =>-0,5x+1,5=0,4x-0,2
=>-0,9x=-1,7
=>x=17/9
3x-1/2x+3=3x+2/2x-1
=>6x^2-3x-2x+1=6x^2+4x+9x+6
=>-5x+1=13x+6
=>-8x=5
=>x=-5/8
b: \(\Leftrightarrow\left(4x-1\right)\left(-x+7\right)=\left(4x+5\right)\left(-x-2\right)\)
=>\(-4x^2+28x+x-7=-4x^2-8x-5x-10\)
=>29x-7=-13x-10
=>42x=-3
=>x=-1/14
c: =>7x=5y và 2x-y=15
=>7x-5y=0 và 2x-y=15
=>x=25; y=35
Ta có:
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\left(1\right)\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\) và \(3x+7y+5z=30\)
Áp dụng t/c DTSBN ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x+7y+5z}{3.21+7.14+5.10}=\frac{30}{211}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{21}=\frac{30}{211}\Rightarrow x=\frac{630}{211}\\\frac{y}{14}=\frac{30}{211}\Rightarrow y=\frac{420}{211}\\\frac{z}{10}=\frac{30}{211}\Rightarrow z=\frac{300}{211}\end{cases}}\)
Vậy ...
hok tốt!
Ta có: \(\hept{\begin{cases}2x=3y\\5y=7z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{2}\\\frac{y}{7}=\frac{z}{5}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{21}=\frac{y}{14}\\\frac{y}{14}=\frac{z}{10}\end{cases}\Rightarrow}\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
....................................................................
b tự làm nốt nhé
chúc bạn học tốt~
\(2x=3y\)\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{2}\)hay \(\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\)\(\Rightarrow\)\(\frac{y}{7}=\frac{z}{5}\)hay \(\frac{y}{14}=\frac{z}{10}\)
suy ra: \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)hay \(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5x}{50}=\frac{3x+7y-5z}{63+98-50}=\frac{30}{111}=\frac{10}{37}\)
đến đây bn tính tiếp nhé
a, \(\left|x+2\right|-\left|x+7\right|=0\Rightarrow\left|x+2\right|=\left|x+7\right|\Rightarrow\orbr{\begin{cases}x+2=x+7\\x+2=-x-7\end{cases}\Rightarrow\orbr{\begin{cases}0=5\left(loại\right)\\2x=-9\end{cases}\Rightarrow}x=\frac{-9}{2}}\)
b, - Nếu \(2x-1\ge0\Rightarrow x\ge\frac{1}{2}\), ta có: 2x - 1 = 2x - 1 => 2x = 2x (thỏa mãn với mọi x)
- Nếu 2x - 1 < 0 => \(x< \frac{1}{2}\), ta có: 2x - 1 = 1 - 2x => 4x = 2 => x = \(\frac{1}{2}\) (không thỏa mãn điều kiện)
Vậy \(x\ge\frac{1}{2}\)
c,d tương tự b
e, tương tự a
\(\dfrac{3x+2}{5x+7}=\dfrac{3x-1}{5x-3}\)
\(\Leftrightarrow\left(3x+2\right)\left(5x-3\right)=\left(5x+7\right)\left(3x-1\right)\)
\(\Leftrightarrow\left(3x+2\right)\left(5x-3\right)-\left(5x+7\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left(15x^2-9x+10x-6\right)-\left(15x^2-5x+21x-7\right)=0\)
\(\Leftrightarrow15x^2-9x+10x-6-15x^2+5x-21x+7=0\)
\(\Leftrightarrow-15x+1=0\)
\(\Leftrightarrow-15x=-1\)
\(\Leftrightarrow x=\dfrac{-1}{-15}=\dfrac{1}{15}\)
Vậy \(x=\dfrac{1}{15}\)
\(x^3-3x^2+3x-1\)
\(=x^3-3.x^2.1+3.x.1^2-1^3\)
\(=\left(x-1\right)^3\)
\(x^3-3x^2+3x-1\)
\(=x^3-3.x^2.1+3.x.1^2-1^3\)
\(=\left(x-1\right)^3\)