Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ xem lại đề
b/đặt: \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
\(\Rightarrow x=12k;y=9k;z=5k\)
\(\Rightarrow xyz=12k\cdot9k\cdot5k=540k^3=20\)
\(\Rightarrow k^3=\dfrac{1}{27}\Rightarrow k=\dfrac{1}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}x=12k=12\cdot\dfrac{1}{3}=4\\y=9k=9\cdot\dfrac{1}{3}=3\\z=5k=5\cdot\dfrac{1}{3}=\dfrac{5}{3}\end{matrix}\right.\)
Vậy........
c/ Áp dụng t/c của dãy tỉ số = nhau có:
\(\dfrac{12x-15y}{7}=\dfrac{20z-12x}{9}=\dfrac{15y-20z}{11}=\dfrac{12x-15y+20z-12x+15y-20z}{7+9+11}=\dfrac{0}{27}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{12x-15y}{7}=0\\\dfrac{20z-12x}{9}=0\\\dfrac{15y-20z}{11}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}12x-15y=0\\20z-12x=0\\15y-20z=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}12x=15y\\20z=12x\\15y=20z\end{matrix}\right.\)=> \(12x=15y=20z\)
\(\Rightarrow\dfrac{x}{\dfrac{1}{12}}=\dfrac{y}{\dfrac{1}{15}}=\dfrac{z}{\dfrac{1}{20}}\)
A/dụng t/c của dãy tỉ số = nhau có:
\(\dfrac{x}{\dfrac{1}{12}}=\dfrac{y}{\dfrac{1}{15}}=\dfrac{z}{\dfrac{1}{20}}=\dfrac{x+y+z}{\dfrac{1}{12}+\dfrac{1}{15}+\dfrac{1}{20}}=\dfrac{48}{\dfrac{1}{5}}=240\)
\(\Rightarrow\left\{{}\begin{matrix}x=240\cdot\dfrac{1}{12}=20\\y=240\cdot\dfrac{1}{15}=16\\z=240\cdot\dfrac{1}{20}=12\end{matrix}\right.\)
Vậy......
a) sai đề bn nhé:
\(\frac{x}{2}\) = \(\frac{y}{3}\); \(\frac{y}{4}\) = \(\frac{z}{5}\) và x2 - y2 = -16
+) Với x = 2 ta có: f(2) + 2f(0) = 2.3
f(2) + 2f(0) = 6 (1)
+) Với x = 0 ta có: f(0) + 2f(2) = 0.3
f(0) + 2f(2) = 0
=> 2f(0) + 4f(2) = 0 (2)
Lấy (1) trừ (2) ta có:
-3f(2) = 6
=> f(2) = -2
\(\frac{1}{2}\left(\frac{4}{9}-x\right)-\frac{3}{2}\left(16-x\right)+\frac{1}{2}\left(5x+10\right)=0\)
\(\Leftrightarrow\frac{2}{9}-\frac{1}{2}x-24+\frac{3}{2}x+\frac{5}{2}x+5=0\)
\(\Leftrightarrow-\frac{169}{9}=\frac{7}{2}x\Leftrightarrow x=-\frac{338}{63}\)
Sai thì thông cảm cho mk nha
a: \(x^2+\left|y-2\right|+5>=5\)
Dấu '=' xảy ra khi x=0 và y=2
b: \(\left|4x-3\right|+\left|5y+7.5\right|+17.5>=17.5\)
Dấu '=' xảy ra khi x=3/4 và y=-1,5
a) \(x^2+\left|y-2\right|=5\)
\(\Leftrightarrow x^2+\left|y-2\right|-5=0\)
Ta có \(x^2\ge0;\left|y-2\right|\ge0\)
\(\Leftrightarrow x^2+\left|y-2\right|\ge0\)
\(\Leftrightarrow x^2+\left|y-2\right|-5\ge-5\)
\(\Rightarrow MIN\left(x^2+\left|y-2\right|-5\right)=-5\) khi:
\(\left\{{}\begin{matrix}x^2=0\\\left|y-2\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy GTNN của biểu thức \(=-5\) khi \(x=0;y=2\)
Bạn tham khảo, chúc bạn học tốt! Còn để b) bạn coi hộ lại nha! :))
\(\frac{x+2}{4}=\frac{16}{x+2}\Rightarrow\left(x+2\right)^2=16\times4\)
<=>(x+2)2=64
=>x+2=\(\sqrt{64}\)
<=>x+2=8
=>x=6
nhé
Theo đề ta có:
(x+2)2 = 64
Ta có 2 trường hợp:
+ Trường hợp 1: x+2=8 => x=6
+Trường hợp 2: x+2= -8 => x=-10
Vậy x=6 và -10