Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<br class="Apple-interchange-newline"><div id="inner-editor"></div>x−z−2 =x−y−1 =y−z−1 ⇒x−z=2(x−y)=2(y−z)(1)
a) (x−z)3=(x−z)2(x−z)=(2(x−y))2(2(y−z))
⇔(x−z)3=8(x−y)2(y−z)ĐPCM a)
a, \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\); 5x-y-z=-10
biến đổi:
\(\frac{x}{19}=\frac{5x}{95}\)
=> \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\)
(=) \(\frac{5x}{95}=\frac{y}{5}=\frac{z}{95}\)
= \(\frac{5x-y-z}{95-5-95}\)
= \(\frac{-10}{-5}=2\)
* \(\frac{x}{19}=2\)=> \(x=19.2=38\)
* \(\frac{y}{5}=2\)=> \(y=2.5=10\)
* \(\frac{z}{95}=2\)=> \(z=95.2=190\)
Ta có :
\(3x=2y\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{2x}{4}\)
ADTCDTSBN , ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{2x}{4}=\frac{y-2x}{3-4}=\frac{5}{-1}=-5\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=-5\\\frac{y}{3}=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-5.2=-10\\y=-5.3=-15\end{cases}}}\)
Vậy \(x=-10;y=-15\)
Ta có: \(\hept{\begin{cases}x\left(x+y+z\right)=-5\left(1\right)\\y\left(x+y+z\right)=9\left(2\right)\\z\left(x+y+z\right)=5\left(3\right)\end{cases}}\)
Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow\left(x+y+z\right)^2=9\)
\(\Leftrightarrow x+y+z=-3\) hoặc \(3\)
Nếu \(x+y+z=-3\) thì \(\hept{\begin{cases}x=\frac{-5}{-3}=\frac{5}{3}\\y=\frac{9}{-3}=-3\\z=\frac{5}{-3}=\frac{-5}{3}\end{cases}}\)
Nếu \(x+y+z=3\) thì: \(\hept{\begin{cases}x=\frac{-5}{3}=-\frac{5}{3}\\y=\frac{9}{3}=3\\z=\frac{5}{3}=\frac{5}{3}\end{cases}}\)
Vậy...
\(\frac{x}{5}=\frac{y}{3}\)và x2-y2=4(x,y>0)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\Rightarrow\frac{x^2}{25}=\frac{1}{4}\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\frac{5}{2}\)
\(\Rightarrow\frac{y^2}{9}=\frac{1}{4}\Rightarrow y^2=\frac{9}{4}\Rightarrow y=\frac{3}{2}\)
Vậy x =\(\frac{5}{2}\)và y =\(\frac{3}{2}\)
Ta có:
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{3}=\frac{y^2}{5}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{3^2}=\frac{y^2}{5^2}=\frac{x^2-y^2}{3^2-5^2}=\frac{-4}{-16}=\frac{1}{4}\)
\(\Rightarrow\frac{x^2}{3^2}=\frac{1}{4}\Rightarrow x=\sqrt{3^2.\frac{1}{4}}=\frac{3}{2}\)
\(\frac{y^2}{5^2}=\frac{1}{4}\Rightarrow y=\sqrt{5^2.\frac{1}{4}}=\frac{5}{2}\)
<=>(x−y)(x+y)=1998<=>(x−y)(x+y)=1998
Dễ thấy (x+y) và (x-y) cùng tính chẵn , lẻ
TH1: (x+y) và (x-y) cùng lẻ lẻ.lẻ=1998 (chẵn) Vô lý \Rightarrow Loại
TH2: (x+y) và (x-y) cùng chẵn (x+y).(x-y)chia hết 4. Mà 1998 không chia hết 4
Loại
Vậy không có nghiệm (x; y) nguyên nào thỏa mãn đề bài
tuyệt vời, k j để bàn cãi, mk tisk cho bn