Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
△'=(-2)2-1(m-1)
=4-m+1
=5-m
Để PT có 2 no pb thì △'>0
⇒5-m>0
⇒m<5
theo vi-ét ta có
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)
mà: \(x^2_1x_2+x_1x_2^2-2\left(x_1+x_2\right)=0\)
⇔\(\left(x_1x_2\right)\left(x_1+x_2\right)-2\left(x_1+x_2\right)=0\)
⇔\(\left(m-1\right)4-2\cdot4=0\)
⇔\(4m-4-8=0\)
⇔4m-12=0
⇔4m=12
⇔m=3
Vậy ...
b) phương trình có 2 nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)
\(\Leftrightarrow-4m+4\ge0\)
\(\Leftrightarrow m\le1\)
Ta có: \(x_1^2+x_1x_2+x_2^2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)
\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)
\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)
\(\Leftrightarrow4m^2-10m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)
dùng đen ta phẩy để giải pt.
kết quả khi m > \(\frac{5}{6}\)thì pt có nghiệm
theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)
x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)
theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)
<=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)
thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.
\(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2+2\right)\)
\(=4m^2+8m+4-4m^2-8\)
\(=8m-4\)
Để pt có 2 nghiệm thì \(\Delta>0\)
\(\Leftrightarrow8m-4>0\)
\(\Leftrightarrow m>\dfrac{1}{2}\)
Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)
\(x_1^2+x_1x_2+2=3x_1+x_2\)
\(\Leftrightarrow x_1^2+m^2+2+2=2x_1+2\left(m+1\right)\)
\(\Leftrightarrow x_1^2-2x_1+4+m^2-2m-2=0\)
\(\Leftrightarrow x_1^2-2x_1+2+m^2-2m=0\)
\(\Leftrightarrow x_1^2-2x_1+1+m^2-2m+1=0\)
\(\Leftrightarrow\left(x_1-1\right)^2+\left(m-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=1\\m=1\end{matrix}\right.\)(tm)
Vậy \(m=1\)
Δ=(m+2)^2-4*2m=(m-2)^2
Để PT có hai nghiệm pb thì m-2<>0
=>m<>2
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1x_2}{4}\)
=>\(\dfrac{x_1+x_2}{x_1x_2}=\dfrac{x_1x_2}{4}\)
=>\(\dfrac{m+2}{2m}=\dfrac{2m}{4}=\dfrac{m}{2}\)
=>2m^2=2m+4
=>m^2-m-2=0
=>m=2(loại) hoặc m=-1
Δ=(m+2)^2-4*2m
=m^2+4m+4-8m
=(m-2)^2>=0
Để PT luôn có hai nghiệm phân biệt thì m-2<>0
=>m<>2
\(\left(x_1+x_2\right)^2-x_1x_2< =3\)
=>(m+2)^2-2m<=3
=>m^2+4m+4-2m-3<=0
=>m^2+2m+1<=0
=>(m+1)^2<=0
=>m=-1