Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lớn hơn thì nhân tử cùng dấu
Nhỏ hơn thì nhân tử trái dấu
=> Xét hai trường hợp
a, Xét x+2>0
2x-5>0
Giải ra x b , c tương tự
a) Ta có: \(\left(x-\frac{1}{5}\right).\left(x+\frac{4}{7}\right)>0\)
+ \(\hept{\begin{cases}x-\frac{1}{5}>0\\x+\frac{4}{7}>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>\frac{1}{5}\\x>-\frac{4}{7}\end{cases}}\)\(\Rightarrow\)\(x>\frac{1}{5}\)
+ \(\hept{\begin{cases}x-\frac{1}{5}< 0\\x+\frac{4}{7}< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< \frac{1}{5}\\x< -\frac{4}{7}\end{cases}}\)\(\Rightarrow\)\(x< -\frac{4}{7}\)
Vậy \(x>\frac{1}{5}\)hoặc \(x< -\frac{4}{7}\)
b) Ta có: \(\left(x+\frac{2}{3}\right).\left(x+2\right)< 0\)
+ \(\hept{\begin{cases}x+\frac{2}{3}>0\\x+2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>-\frac{2}{3}\\x< -2\end{cases}}\)\(\Rightarrow\)\(-\frac{2}{3}< x< -2\)( vô lí )
+ \(\hept{\begin{cases}x+\frac{2}{3}< 0\\x+2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{2}{3}\\x>-2\end{cases}}\)\(\Rightarrow\)\(-\frac{2}{3}>x>-2\)
Vậy \(-2< x< -\frac{2}{3}\)
(x - 2/7)(x + 1/4) > 0
Xét 2 trường hợp:
- \(\hept{\begin{cases}x-\frac{2}{7}>0\\x+\frac{1}{4}>0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{2}{7}\\x>-\frac{1}{4}\end{cases}\Rightarrow}x>\frac{2}{7}}\)
- \(\hept{\begin{cases}x-\frac{2}{7}< 0\\x+\frac{1}{4}< 0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{2}{7}\\x< -\frac{1}{4}\end{cases}\Rightarrow}x< -\frac{1}{4}}\)
Vậy x > 2/7 hoặc x < -1/4
a) x=-213:(1+2+3+4+...+100)<=>x=-213/100
b) x-x=-1/3-2/4 <=> 0= -5/6 (vô lý )
c) x=-0,8119408369
d) x= 0.0258907758
a) \(\left(x-\frac{1}{2}\right)\left(2x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=0\\2x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}}\)
b) \(\left(x-\frac{1}{2}\right)\left(x+2\right)< 0\)
TH1: \(\hept{\begin{cases}x-\frac{1}{2}< 0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x< -2\end{cases}}}\)
TH2: \(\hept{\begin{cases}x-\frac{1}{2}>0\\x+2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x< -2\end{cases}}}\)