K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2023

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2022}{2023}\)
\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{2022}{2023}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2023}\)
\(\Rightarrow x+1=2023\)
\(\Rightarrow x=2022\)
Vậy x = 2022
#kễnh

23 tháng 9 2023

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{x.\left(x+1\right)}\)

\(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+...+\dfrac{x+1-x}{x.\left(x+1\right)}\)

\(\dfrac{2}{1.2}-\dfrac{1}{1.2}+\dfrac{3}{2.3}-\dfrac{2}{2.3}+...+\dfrac{x+1}{x.\left(x+1\right)}-\dfrac{x}{x.\left(x+1\right)}\)

\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)

\(1-\dfrac{1}{x+1}\) =\(\dfrac{2022}{2023}\)

\(\dfrac{2023}{2023}-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)

⇒ \(x+1=2023\)

\(x=2023-1=2022\)

16 tháng 4 2023

(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = (\(\dfrac{2021}{2}+1\))+(\(\dfrac{2020}{3}+1\))+....+(\(\dfrac{1}{2022}+1\))

(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = \(\dfrac{2023}{2}\)+\(\dfrac{2023}{3}\)+....+ \(\dfrac{2023}{2022}\)

(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = 2023.( \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\))

vậy x= 2023

9 tháng 5 2022

`2x-15=-25`

`2x=-10`

`x=-5`

___________

`3/5<x/10<4/5`

`3/5=(3xx10)/(5xx10)=30/50`

`x/10=(5x)/(10xx5)=(5x)/50`

`4/5=(4xx10)/(5xx10)=40/50`

`=>30/50<(5x)/50<40/50`

`=>30<5x<40`

`=>x=7`

11 tháng 4 2023

\(\left(x+2022\right)\left(x-2023\right)=0\)

\(\Leftrightarrow x+2022=0\) hoặc \(x-2023=0\)

\(\Leftrightarrow x=-2022\) hoặc \(x=2023\)

11 tháng 4 2023

1.     Giải:

Do \(5x+13B\in\left(2x+1\right)\Rightarrow5x+13⋮2x+1.\)

 

 \(\Rightarrow2\left(5x+13\right)⋮2x+1\Rightarrow10x+26⋮2x+1.\)

 \(\Rightarrow5\left(2x+1\right)+21⋮2x+1.\)

Do 5(2x+1)⋮2x+1⇒ Ta cần 21⋮2x+1.

⇒ 2x+1 ϵ B(21)=\(\left\{1;3;7;21\right\}.\)

Ta có bảng:

   2x+1        1       3       7      21
       x        0       1       3      10
        TM      TM      TM      TM

Vậy xϵ\(\left\{0;1;3;10\right\}.\)

2. Giải:

Do (2x-18).(3x+12)=0.

⇒ 2x-18=0             hoặc             3x+12=0.

⇒ 2x     =18                               3x       =-12.

⇒   x     =9                                   x       =-4.

Vậy xϵ\(\left\{-4;9\right\}.\)

3. S= 1-2-3+4+5-6-7+8+...+2021-2022-2023+2024+2025.

S= (1-2-3+4)+(5-6-7+8)+...+(2021-2022-2023+2024)+2025 Có 506 cặp.

S= 0 + 0 + ... + 0 + 2025.

⇒S= 2025.

 

6 tháng 5 2022

\(P=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)

\(2P=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{3}{5.7}+...+\dfrac{2}{2021.2023}\)

\(2P=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)

\(2P=\dfrac{1}{1}-\dfrac{1}{2023}\)

\(P=\dfrac{2022}{2023}:2\)

\(P=\dfrac{1011}{2023}\)

6 tháng 5 2022

\(=>P=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)

\(P=1-\dfrac{1}{2023}=\dfrac{2023}{2023}-\dfrac{1}{2023}=\dfrac{2022}{2023}\)

\(x.P=\dfrac{2022}{2023}=>x=P:\dfrac{2022}{2023}=\dfrac{2022}{2023}:\dfrac{2022}{2023}=1\)

\(A=\dfrac{1}{3}x+x-\dfrac{4}{3}x=0\)