Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2-6x-1=0\)
Theo Vi - ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{6}{2}=3\\x_1x_2=\dfrac{c}{a}=-\dfrac{1}{2}\end{matrix}\right.\)
Ta có :
\(A=\dfrac{x_1-2}{x_2-1}+\dfrac{x_2-2}{x_1-1}\)
\(=\dfrac{\left(x_1-2\right)\left(x_1-1\right)+\left(x_2-2\right)\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}\)
\(=\dfrac{x_1^2-x_1-2x_1+2+x_2^2-x_2-2x_2+2}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-3\left(x_1+x_2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{3^2-2.\left(-\dfrac{1}{2}\right)-3.3+4}{-\dfrac{1}{2}-3+1}\)
\(=-2\)
\(x\left(3x-4\right)=2x^2+1\)
\(\Leftrightarrow3x^2-4x-2x^2-1=0\)
\(\Leftrightarrow x^2-4x-1=0\)
Theo Vi - ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=4\\x_1x_2=\dfrac{c}{a}=-1\end{matrix}\right.\)
Ta có :
\(A=x_1^2+x_2^2+3x_1x_2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2+3x_1x_2\)
\(=\left(x_1+x_2\right)^2+x_1x_2\)
\(=4^2-1\)
\(=16-1\)
\(=15\)
a) Ta có: \(x^2-11x-26=0\)
nên a=1; b=-11; c=-26
Áp dụng hệ thức Viet, ta được:
\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-11\right)}{1}=11\)
và \(x_1x_2=\dfrac{c}{a}=\dfrac{-26}{1}=-26\)
Dùng định lí Viète vào pt cho ta:
\(\left\{{}\begin{matrix}S=x_1+x_2=2\\P=x_1x_2=\dfrac{1}{3}\end{matrix}\right.\)
a) \(A=\left(x_1-1\right)\left(x_2-1\right)=x_1x_2-\left(x_1+x_2\right)+1=-\dfrac{2}{3}\)
b)\(B=x_1\left(x_2-1\right)+x_2\left(x_1-1\right)=2x_1x_2-\left(x_1+x_2\right)=-\dfrac{4}{3}\)
c)\(C=\sqrt{x_1}+\sqrt{x_2}=\sqrt{\left(\sqrt{x_1}+\sqrt{x_2}\right)^2}=\sqrt{x_1+x_2+2\sqrt{x_1x_2}}=\sqrt{2+2\sqrt{\dfrac{1}{3}}}\)
Tới đó hết giải được tiếp :)
d)\(D=x_1\sqrt{x_2}+x_2\sqrt{x_1}=\sqrt{x_1x_2}.\left(\sqrt{x_1}+\sqrt{x_2}\right)\) rồi thế kết quả câu C và biểu thức từ trên.
\(=x_1^2+x_2^2-2x_1x_2-x_1^2+\dfrac{1}{2}x_1\)
\(=x_2^2-2x_1x_2+\dfrac{1}{2}x_1\)