K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2019

                                  Giải

Ta có : \(\hept{\begin{cases}\left(x-y+z\right)^2\ge0\\\left(x+y-3\right)^2\ge0\\\left(z+5\right)^2\ge0\end{cases}}\)

Mà \(\left(x-y+z\right)^2+\left(x+y-3\right)^2+ \left(z+5\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-y+z\right)^2=0\\\left(x+y-3\right)^2=0\\\left(z+5\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-y+z=0\\x+y-3=0\\z+5=0\end{cases}}\)

\(\Rightarrow z=0-5\Leftrightarrow z=-5\)

\(\Rightarrow\hept{\begin{cases}x+y=0+3=3\\x-y-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=3\\x-y=5\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\left(3+5\right)\div2=4\\y=3-4=-1\end{cases}}\)

Vậy \(\hept{\begin{cases}z=-5\\x=4\\y=-1\end{cases}}\)

19 tháng 2 2019

( x - y + z )2 + ( x + y - 3 )2 + ( z + 5 )2 = 0

<=> \(\hept{\begin{cases}\left(x-y+z\right)^2=0\\\left(x+y-3\right)^2=0\\\left(z+5\right)^2=0\end{cases}}\)

<=> \(\hept{\begin{cases}x-y-5=0\\x+y-3=0\\z=-5\end{cases}}\)

<=> \(\hept{\begin{cases}2x-8=0\\x+y-3=0\\z=-5\end{cases}}\)

<=> \(\hept{\begin{cases}x=4\\y=-1\\z=-5\end{cases}}\)

Hk tốt

28 tháng 1 2022

Câu 3:

<=> \(\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}\left(x-2^2-3\right)^2=0\\y=2\\z=-3\end{cases}}\) <=> \(\hept{\begin{cases}x=7\\y=2\\z=-3\end{cases}}\)

Câu 4 tương tự.

23 tháng 1 2017

bài 2: (x-3).(y+2) = -5

    Vì x, y \(\in\)Z   => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}

Ta có bảng: 

x-35-5-11
y+21-1-55
x8-224
y-1-3-73



bài 3: a(a+2)<0

TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)

TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
 

           Vậy -2<a<0

23 tháng 1 2017

Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)

TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2

TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại

                         Vậy 1<a<2

30 tháng 7 2017

Nhận xét (x- 5)2 >= 0 với mọi x

               (y- 2)>= 0 với mọi y

               (z+ 3)2016 >= 0 với mọi z

=> (x- 5)2+ (y- 2)4+ (z+ 3)2016= 0

<=> \(\hept{\begin{cases}x-5=0\\y-2=0\\z+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\\z=-3\end{cases}}\) 

30 tháng 7 2017

\(x=5\)

\(y=2\)

\(z=-3\)

7 tháng 5 2017

\(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)

Vì \(\left(x-y^2+z\right)^2\ge0;\left(y-2\right)^2\ge0;\left(x+3\right)^2\ge0\)nên \(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2\ge0\)

Mà \(\left(x-y^2+z\right)+\left(y-2\right)^2+\left(x+3\right)^2=0\)nên \(\hept{\begin{cases}x-y^2+z=0\\y-2=0\\z+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=7\\y=2\\z=-3\end{cases}}}\)

6 tháng 4 2016

ta có:(x-y2+z)\(\ge\)  0 với mọi x, y, z

(y-2)\(\ge\)  0 với mọi y

(z+3)\(\ge\)  0 với mọi z

=> (x-y2+z)2+(y-2)2+(z+3)\(\ge\) 0 với mọi x, y, z

Mà (x-y2+z)2+(y-2)2+(z+3)2=0

=>(x-y2+z)2 = 0 => x-y2+z=0

=>(y-2)2=0=>y-2=0=>y=2

=>(x+3)2=0=>x+3=0=>x=-3

=>-3-4+z=0=>z=7

20 tháng 2 2018

Mai Ngọc ơi

Hay lắm

Mk k cho bạn rùi