K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

a)  \(4\left(2x+7\right)^2=9\left(x+3\right)^2\)

\(\Leftrightarrow4\left(4x^2+28x+49\right)=9\left(x^2+6x+9\right)\)

\(\Leftrightarrow16x^2+112x+196=9x^2+54x+81\)

\(\Leftrightarrow7x^2+58x+115=0\)

\(\Leftrightarrow7x^2+35x+23x+115=0\)

\(\Leftrightarrow7x\left(x+5\right)+23\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\7x+23=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-\frac{23}{7}\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-5;-\frac{23}{7}\right\}\)

b) \(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+4x+x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[2x\left(x+2\right)+\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\)\(x+1=0\)

hoặc \(2x+1=0\)

hoặc  \(x+2=0\)

\(\Leftrightarrow\) \(x=-1\)

hoặc    \(x=-\frac{1}{2}\)

hoặc    \(x=-2\)

 Vậy tập nghiệm của phương trình là \(S=\left\{-1;-\frac{1}{2};-2\right\}\)

11 tháng 2 2020

c) \(x^4+x^2+6x-8=0\)

\(\Leftrightarrow x^4-x^3+x^3-x^2+2x^2-2x+8x-8=0\)

\(\Leftrightarrow x^3\left(x-1\right)+x^2\left(x-1\right)+2x\left(x-1\right)+8\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+2x+8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2-x^2-2x+4x+8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)-x\left(x+2\right)+4\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x+4\right)=0\)

\(\Leftrightarrow\)\(x-1=0\)

hoặc   \(x+2=0\)

hoặc   \(x^2-x+4=0\)

\(\Leftrightarrow\)\(x=1\)(tm)

hoặc   \(x=-2\)(tm)

hoặc  \(\left(x-\frac{1}{2}\right)^2+\frac{15}{4}=0\)(ktm)

Vậy tập nghiệm của phương trình là \(S=\left\{1;-2\right\}\)

d) \(\left(x-1\right)^3+\left(2x+3\right)^3=27x^3+8\)

\(\Leftrightarrow x^3-3x^2+3x-1+8x^3+36x^2+54x+27=27x^3+8\)

\(\Leftrightarrow9x^3+33x^2+57x+26=27x^3+8\)

\(\Leftrightarrow18x^3-33x^2-57x-18=0\)

\(\Leftrightarrow18x^3-54x^2+21x^2-63x+6x-18=0\)

\(\Leftrightarrow18x^2\left(x-3\right)+21x\left(x-3\right)+6\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(18x^2+21x+6\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(18x^2+9x+12x+6\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left[9x\left(2x+1\right)+6\left(2x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)\left(9x+6\right)=0\)

\(\Leftrightarrow\)\(x-3=0\)

hoặc  \(2x+1=0\)

hoặc  \(9x+6=0\)

\(\Leftrightarrow\)\(x=3\)

hoặc  \(x=-\frac{1}{2}\)

hoặc \(x=-\frac{2}{3}\)

Vậy tập nghiệm của phương trình là \(S=\left\{3;-\frac{1}{2};-\frac{2}{3}\right\}\)

18 tháng 1 2022

một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?

28 tháng 11 2017

Ta có:

\(\left(x-1\right)\left(x-2\right)\left(x+7\right)\left(x+8\right)+8\)

\(=\left(x-1\right)\left(x+7\right)\left(x-2\right)\left(x+8\right)+8\)

\(=\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8\)

\(=\left(x^2+6x-7\right)\left(x^2+6x-7-9\right)+8\)

Đặt \(t=x^2+6x-7\), ta được:

\(t\left(t-9\right)+8\)

\(=t^2-9t+8\)

\(=\left(t-8\right)\left(t-1\right)\)

Thay \(t=x^2+6x-7\) vào, ta được:

\(\left(x^2+6x-7-8\right)\left(x^2+6x-7-1\right)\)

\(=\left(x^2+6x-15\right)\left(x^2+6x-8\right)\)

8 tháng 7 2016

\(\frac{1}{1-x}.\frac{1}{1+x}.\frac{1}{1+x^2}.\frac{1}{1+x^4}.\frac{1}{1+x^8}.\frac{1}{1+x^{16}}\)

\(=\frac{1}{1-x^2}.\frac{1}{1+x^2}.\frac{1}{1+x^4}.\frac{1}{1+x^8}.\frac{1}{1+x^{16}}\)

\(=\frac{1}{1-x^4}.\frac{1}{1+x^4}.\frac{1}{1+x^8}.\frac{1}{1+x^{16}}\)

\(=\frac{1}{1-x^8}.\frac{1}{1+x^8}.\frac{1}{1+x^{16}}\)

\(=\frac{1}{1-x^{16}}.\frac{1}{1+x^{16}}\)

\(=\frac{1}{1-x^{32}}\)

9 tháng 7 2016

không biết

28 tháng 6 2018

Bài 1 :

a ) Ta có :

\(\left(x+y\right)^2=x^2+y^2+2xy=20+16=36\)

b ) Ta có :

\(x^2+y^2=\left(x+y\right)^2-2xy=64-30=34\)

20 tháng 8 2019

A=1/(x-2)(x-3) + 1/(x-3)(x-4) + 1/(x-4)(x-5) + 1/(x-5)(x-6)=1/8 (ĐKXĐ: x#2,x#3,x#4,x#5,x#6)

A= 1/x-2 -1/x-3 + 1/x-3 -1/x-4 .....-1/x-6=1/8

=>1/x-2 -1/x-6=1/8

=>8(x-6)-8(x-2)=(x-2)(x-6)

=> 8x-48-8x+16=x^2-8x+12

=> x^2-8x-20=0

=> (x-10)(x+2)=0 => x=10,x=-2 thuộc ĐKXĐ

Có cần thế ko ạ ??? Shinichi

Điều kiện xác định \(\hept{\begin{cases}x\ne2\\x\ne\\x\ne4\end{cases}3}\)

                              \(\hept{\begin{cases}x\ne5\\x\ne6\end{cases}}\)

Ta có : \(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)

\(x^2-7x+12=\left(x-3\right)\left(x-4\right)\)

\(x^2-9x+20=\left(x-4\right)\left(x-5\right)\)

\(x^2-11+30=\left(x-5\right)\left(x-6\right)\)

Phương trình đã tương đương với 

\(\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{1}{\left(x-5\right)\left(x-6\right)}=\frac{1}{8}\)

\(\Leftrightarrow\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}+\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}-\frac{1}{x-5}=\frac{1}{8}\)

\(\Leftrightarrow\frac{1}{x-6}-\frac{1}{x-2}=\frac{1}{8}\Leftrightarrow\frac{4}{\left(x-6\right)\left(x-2\right)}=\frac{1}{8}\)

\(\Leftrightarrow x^2-8x-20=0\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\)

\(x-10=0\Leftrightarrow x=10\)

hoặc 

\(x+2=0\Leftrightarrow x=-2\)

\(\Leftrightarrow\orbr{\begin{cases}x=10\\x=-2\end{cases}}\)thỏa mãn điều kiện phương trình 

Phương trình có nghiệm \(x=10;x=-2\)