Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\left(x+16\right)\left(x+9\right)}{x}=\dfrac{x^2+25x+144}{x}=\dfrac{x^2}{x}+\dfrac{25x}{x}+\dfrac{144}{x}=x+25+\dfrac{144}{x}\)Vì \(x>0;\dfrac{144}{x}>0\Rightarrow x+\dfrac{144}{x}>0\)
Áp dụng bất đẳng thức AM - GM \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow\dfrac{x+\dfrac{144}{x}}{2}\ge\sqrt{x.\dfrac{144}{x}}=\sqrt{144}=12\Rightarrow x+\dfrac{144}{x}\ge12.2=24\)Ta có:
\(A=x+25+\dfrac{144}{x}\ge24+25=49\)
Vậy : \(Min_A=49\)
Đẳng thức xảy ra khi và chỉ khi :
\(x=\dfrac{144}{x}\Rightarrow x^2=144\Rightarrow\left[{}\begin{matrix}x=12\\x=-12\end{matrix}\right.\)
Vì \(x>0\Rightarrow x=12\)
BĐT AM-GM để xem à
\(A=\dfrac{\left(x+16\right)\left(x+9\right)}{x}=\dfrac{x^2+25x+144}{x}=x+25+\dfrac{144}{x}\)
Áp dụng BĐT AM-GM cho 2 số không âm
\(x+\dfrac{144}{x}\ge2\sqrt{\dfrac{x.144}{x}}\)
\(x+\dfrac{144}{x}\ge24\)
\(x+\dfrac{144}{x}+25\ge49\)
\(A\ge49\)
\(Min_A=49\)
\(A=\dfrac{x^2+25x+\left(3.4\right)^2}{x}=\dfrac{x^2+\left[49x-24x\right]+\left(3.4\right)^2}{x}=\dfrac{x^2-24x+\left(3.4\right)^2+49x}{x}\)\(A=\dfrac{\left(x-12\right)^2}{x}+49\ge49\)
\(A=\dfrac{\left(x+16\right)\left(x+9\right)}{x}\)
\(A=\dfrac{x^2+25x+144}{x}\)
Vì x>0 nên ta được quyền rút gọn
\(A=x+25+\dfrac{144}{x}\)
Vì x>0 nên \(\dfrac{144}{x}>0\)
Áp dụng BĐT AM-GM cho \(x+\dfrac{144}{x}\left(x>0\right)\), ta có:
\(\dfrac{x+\dfrac{144}{x}}{2}\ge\sqrt{\dfrac{x.144}{x}}\)
\(x+\dfrac{144}{x}\ge2.\sqrt{144}\)
\(x+\dfrac{144}{x}\ge24\)
\(A=x+\dfrac{144}{x}+25\ge24+25\)
Vậy MinA =49 khi \(x=\dfrac{144}{x}\)
\(x=\dfrac{144}{x}\)
\(x^2=144\)
\(x=\pm12\)
Chọn nghiệm x=12 ( x>0)
Vậy: MinA=49 khi x=12
Bài 1: \(A=x^2-2x+3\)
\(=x^2-2x+1+2\)
\(=\left(x-1\right)^2+2\ge2\forall x\)
Đẳng thức xảy ra khi \(\left(x-1\right)^2=0\Rightarrow x=1\)
Bài 2:
\(2x^2+4x+11=2x^2+4x+2+9\)
\(=2\left(x^2+2x+1\right)+9\)
\(=2\left(x+1\right)^2+9\ge9>0\forall x\)
\(\dfrac{\left(x+16\right)\left(x+9\right)}{x}=\dfrac{x^2+25x+144}{x}=x+25+\dfrac{144}{x}\)
Ta có:
x+\(\dfrac{144}{x}\)\(\ge\)2\(\sqrt{x.\dfrac{144}{x}}\)=2.12=24(dựa vào định lí côsi)
\(\Leftrightarrow\)x+25+\(\dfrac{144}{x}\)\(\ge\)24+25=49
Vậy GTNN của A là 49
49