Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(y=2x+\frac{1}{x^2}-2\)
hay \(y=x+x+\frac{1}{x^2}-2\ge3\sqrt[3]{\frac{x.x.1}{x^2}}-2=3-2=1\)
vậy giá trị nhỏ nhất của y là 1
Dấu bằng xảy ra khi \(x=\frac{1}{x^2}\Leftrightarrow x=1\)
1. \(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)< 0\)
\(\Rightarrow-\frac{1}{3}< x< \frac{1}{2}\)
2. \(\Leftrightarrow\left(x-2\right)\left(3-2x\right)>0\)
\(\Rightarrow\frac{3}{2}< x< 2\)
3. \(\Leftrightarrow\left(5x-3\right)^2>0\)
\(\Rightarrow x\ne\frac{3}{5}\)
4. \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)-\frac{59}{12}< 0\)
\(\Rightarrow x\in R\)
5. \(\Leftrightarrow2\left(x-1\right)^2+5\ge0\)
\(\Rightarrow x\in R\)
6. \(\Leftrightarrow\left(x+2\right)\left(8x+7\right)\le0\)
\(\Rightarrow-2\le x\le-\frac{7}{8}\)
7.
\(\Leftrightarrow\left(x-1\right)^2+2>0\)
\(\Rightarrow x\in R\)
8. \(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge\frac{2}{3}\end{matrix}\right.\)
9. \(\Leftrightarrow\frac{1}{3}\left(x+3\right)\left(x+6\right)< 0\)
\(\Rightarrow-6< x< -3\)
10. \(\Leftrightarrow x^2-6x+9>0\)
\(\Leftrightarrow\left(x-3\right)^2>0\)
\(\Rightarrow x\ne3\)
Bài giải đã giải thích rồi mà......Với 0<t<1 =>\(\left\{\begin{matrix}t^3>0\\1-t>0\end{matrix}\right.\) tích hai số dương => phải dương
X^2 + 2( m+1) X - m+3 =0
ta có
( m + 1 ) + m-3 = 0
m^2 + 3m -2 = 0
m1 = \(\frac{-3\sqrt{17}}{2}\)
m2 = \(\frac{-3-\sqrt{17}}{2}\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}4x+3>=0\\\left(x+2-4x-3\right)\left(x+2+4x+3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{3}{4}\\\left(-3x-1\right)\left(5x+5\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{3}{4}\\\left(3x+1\right)\left(x+1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow x>-\dfrac{1}{3}\)
d: \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-2< 0\\2x+1>=0\end{matrix}\right.\\\left\{{}\begin{matrix}3x-2>=0\\\left(2x+1-3x+2\right)\left(2x+1+3x-2\right)>=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{2}{3}\\x>-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(-x+3\right)\left(5x-1\right)>=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< x< \dfrac{2}{3}\\\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(x-3\right)\left(5x-1\right)< =0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1}{2}< x< \dfrac{2}{3}\\\dfrac{2}{3}< =x< =3\end{matrix}\right.\)
vt rõ đề đi
Ta cần chứng minh
\(x+\frac{27}{\left(x+3\right)^3}\ge1\)
\(\Leftrightarrow x+\frac{27}{\left(x+3\right)^3}-1\ge0\)
\(\Leftrightarrow x^4+8x^3+18x^2\ge0\)
Theo đề bài ta có: \(x\ge0\Rightarrow\left\{\begin{matrix}x^4\ge0\\8x^3\ge0\\18x^2\ge0\end{matrix}\right.\)
\(\Rightarrow x^4+8x^3+18x^2\ge0\)
Vậy ta có điều phải chứng minh. Dấu = xảy ra khi x = 0
2/ \(P=x+\frac{2}{2x+1}\)
\(\Leftrightarrow2P=2x+\frac{4}{2x+1}=2x+1+\frac{4}{2x+1}-1\)
\(\ge4-1=3\)
\(\Rightarrow P\ge\frac{3}{2}\)
Vậy GTNN là \(\frac{3}{2}\) đạt được khi x = \(\frac{1}{2}\)