Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt A= x-3/x-5 (đk x khác -5)
<=>A=( x-5)+2/x-5
<=>A= 1+2/x-5
Để A=1+2/x-5 là số nguyên thì 2/x+5 phải là số nguyên
<=> 2 chia hết x-5 hay x-5€ Ư(2)
<=> x-5€ {-2,-1,1,2}
<=> x€ {3,4,6,7}
Mà x€ Z, x khác -5
=> x€{3,4,6,7}
Vậy với x€{3,4,6,7} thì A=x-3/x-5 là số nguyên
b) Đặt B=3x-2/x+3(đk x khác -3) <=> B=3(x+3)-11/x+3
<=> B=3-11/x+3
Để B=3-11/x+3 là số nguyên thì 11/x+3 phải là số nguyên
<=> 11 chia hết cho x+3
<=>x+3€ Ư(11)
<=> x+3€{-11,-1,1,11}
<=> x€{-14,-4,-2,8}
Mà x€Z, x khác -3=> x€{-14,-4,-2,8}
Vậy với x€{-14,-4,-2,8} thì B=3x-2/x+3 là số nguyên
làm mẫu câu a nhé!
a) để bt A nguyên thì => \(x+2⋮x-3\)
=> \(\left(x+2\right)-\left(x-3\right)⋮x-3\)
=> \(5⋮x-3\)
=>\(x-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
ta có bảng :
x-3 | 1 | -1 | 5 | -5 |
x | 4 | 2 | 8 | -2 |
vậy \(x\in\left\{4;\pm2;8\right\}\)
\(A=\frac{3x-1}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)
\(B=\frac{2x^2+x-1}{x+2}=\frac{\left(x+2\right)\left(2x-3\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)
Để A,B đều là số nguyên thì \(x-1\in\left\{1;2;-1;-2\right\}\) và \(x+2\in\left\{1;5;-1;-5\right\}\)
Bạn tự làm nốt
Ta có :
\(A=\frac{x^2+2x-4}{x+1}=\frac{x\left(x+1\right)+x+1-5}{x+1}=x+1-\frac{5}{x+1}\)
Vì A thuộc Z nên 5 / x + 1 thuộc Z
\(\Rightarrow x+1\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-6;-2;0;4\right\}\)( tm n thuộc Z ; n khác - 1 )