K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B
19 tháng 12 2023

loading... 

B
19 tháng 12 2023

loading... 

22 tháng 10 2016

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.

Vậy 4p+1 là hợp số,

22 tháng 10 2016

cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số  b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.

+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+Vậy p có dạng 3k+2

Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.

Vậy 4p+1 là hợp số,

31 tháng 7 2017

a)

số nguyên tố p phải lớn hơn 2 (vì 2 ko là tổng của 2 snt nào cả) nên là số lẻ.

ta phải có p = a + 2, p = b - 2 (chắc chắn có số 2 vì tất cả các snt lớn hơn 2 đều lẻ).

Suy ra a, p, b là 3 số lẻ liên tiếp, do đó có 1 số chia hết cho 3, suy ra số đó = 3 (vì là snt)

vậy 3 số đó là 3,5,7.

Vậy p = 7

31 tháng 7 2017
 
 
 
 

a)

số nguyên tố p phải lớn hơn 2 (vì 2 ko là tổng của 2 snt nào cả) nên là số lẻ.

ta phải có p = a + 2, p = b - 2 (chắc chắn có số 2 vì tất cả các snt lớn hơn 2 đều lẻ).

Suy ra a, p, b là 3 số lẻ liên tiếp, do đó có 1 số chia hết cho 3, suy ra số đó = 3 (vì là snt)

vậy 3 số đó là 3,5,7.

Vậy p = 7

22 tháng 10 2016

a)

p và 2p+1 nguyên tố 
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố 
* xét p # 3 
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3 
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3) 
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3 

kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

22 tháng 10 2016

cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số 

b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số

c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số

a )

* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố 
* xét p # 3 
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3 
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3) 
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3 

kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3

nhé !

.........

còn câu b ,c chưa nghĩ ra

6 tháng 3 2020

Giải thích các bước giải:

Với pp nguyên tố và một trong hai số 8p+1,8p−18p+1,8p−1 là số nguyên tố thì số thứ ba là một hợp số. Thật vậy:

+) Với pp và 8p+18p+1 là số nguyên tố thì ta có:

∙∙ Xét p=2p=2. Khi đó ta có:

8p+1=8.2+1=178p+1=8.2+1=17 là số nguyên tố, 8p−1=8.2−1=158p−1=8.2−1=15 là hợp số.

Vậy bài toán đúng với p=2p=2

∙∙ Xét p=3p=3 thì 8p+1=8.3+1=258p+1=8.3+1=25 là hợp số (trái với giả thiết)

∙∙ Xét p≠3p≠3. Vì pp là số nguyên tố nên pp không chia hết cho 33.

Giả sử pp chia 33 dư 1⇒p=3k+1(k∈N)1⇒p=3k+1(k∈N).

Khi đó: 8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮38p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3

⇒⇒ 8p+18p+1 là hợp số (trái với giả thiết).

Do đó pp chia 3 dư 2, hay p=3k+2 (k∈N)p=3k+2 (k∈N)

Khi đó: 8p−1=8.(3k+2)−1=24k+15=3.(8k+5)⋮3⇒8p−1=8.(3k+2)−1=24k+15=3.(8k+5)⋮3⇒ 8p−18p−1 là hợp số.

Vậy, nếu 8p+18p+1 và pp đều là số nguyên tố thì 8p−18p−1 là hợp số.

+) Với pp và 8p−18p−1 là số nguyên tố thì ta có:

∙∙ Xét p=2p=2. Khi đó ta có:

8p−1=8.2−1=158p−1=8.2−1=15 là hợp số (trái với giả thiết)

∙∙ Xét p=3p=3. Khi đó ta có:

8p−1=8.3−1=238p−1=8.3−1=23 là số nguyên tố, 8p+1=8.3+1=25⋮58p+1=8.3+1=25⋮5 là hợp số.

Vậy bài toán đúng với p=3p=3

∙∙ Xét p≠3p≠3. Vì pp là số nguyên tố nên pp không chia hết cho 33.

Giả sử pp chia 33 dư 2⇒p=3k+2(k∈N)2⇒p=3k+2(k∈N).

Khi đó: 8p−1=8.(3k+2)−1=24k+16−1=24k+15=3.(8k+5)⋮38p−1=8.(3k+2)−1=24k+16−1=24k+15=3.(8k+5)⋮3

⇒⇒ 8p−18p−1 là hợp số (trái với giả thiết).

Do đó pp chia 3 dư 1, hay p=3k+1 (k∈N)p=3k+1 (k∈N)

Khi đó: 8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3⇒8p+1=8.(3k+1)+1=24k+9=3.(8k+3)⋮3⇒ 8p+18p+1 là hợp số.

Vậy, nếu 8p−18p−1 và pp đều là số nguyên tố thì 8p+18p+1 là hợp số 

6 tháng 3 2020

Cho p và 8p - 1 là các số nguyên tố . Chứng minh rằng 8p + 1 là hợp số .

* Nếu p = 3 \(\Rightarrow\) 8p - 1 = 23 là nguyên tố , 8p + 1 = 25 là hợp số ( thỏa mãn )

* Xét : p # 3

Ta thấy : p - 1 , p , p + 1 là 3 số nguyên liên tiếp , nên phải có 1 số chia hết cho 3 .

p nguyên tố khác 3 nên p - 1 hoặc p + 1 chia hết cho 3 \(\Rightarrow\) ( p - 1 ) ( p + 1 ) chia hết cho 3 .

Vậy : ( 8p - 1 ) ( 8p + 1 ) = 64p- 1 = 63p2 + p2 - 1 = 3 . 21p2 + ( p - 1 ) ( p + 1 ) chia hết cho 3 .

Vì 8p - 1 là số nguyên tố lớn hơn 3 \(\Rightarrow\) 8p + 1 chia hết cho 3 , hiển nhiên 8p + 1 > 3

\(\Rightarrow\) 8p + 1 là hợp số  .

Bạn tham khảo bài của mình nhé !!

22 tháng 4 2017

max dễ

Số nguyên tố nhỏ nhất là 2 + 7 thì bằng 9 là hợp số

Còn lại số nguyên tố toàn lẻ cộng 7 vào ra chẵn >> hợp số hết

22 tháng 4 2017

bạn có thể giải chi tiết không Đặng Vũ Cường

3 tháng 11 2019

p là số nguyên tố lớn hơn 3 nên p sẽ không chia hết cho 3; có dạng là 3k+1 hoặc 3k+2

Nếu p có dạng 3k+1 thì p + 8 =  3k+1  + 8=3k+9 chia hết cho 3 => p có dạng 3k+1 là hợp số 

Nếu p có dạng 3k+2 thì p+ 100= 3k+2+100 = 3k+102 chia hết cho 3 => p có dạng 3k+2 ko thỏa mãn, là hợp số( vì chia hết cho 3 )

Vậy p + 100 là hợp số

3 tháng 11 2019

Ta có : p và p + 8 là số nguyên tố

=> p lẻ

=> p lớn hơn hoặc bằng 3 . p ko chia hết cho 3 và p có dạng 3k+1 hoặc 3k+2

Nếu p là 3k+1 => p+8 = 3k+1+8 chia hết cho 3=> p+8 là hợp số ( LOẠI )

=> p = 3k+2

=> p+100 = 3k+2 +100 = 3k+102 chia hết cho 3 => p+100 là hợp số ( THỎA MÃN YÊU CẦU )

15 tháng 10 2015

Với p=3 =>8p-1=23 (thỏa mãn)

                 8p+1=25(loại)

Với p khác 3 =>p không chia hết cho 3 =>8p không chia hết cho 3

mà (8p-1)(8p+1)là tích của 3 số tự nhiên liên tiếp 

Theo đề bài :8p-1 >3 (p thuộc N) =>8p-1 không chia hết cho 3 

=> 8p+1 chia hết cho 3

mà 8p+1>3 

=>8p+1 là hợp số 

Vậy 8p+1 là hợp số, 8p-1 là số nguyên tố.