Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left(n-4\right)\left(n-15\right)\)
Do \(n\in Z\Leftrightarrow n-4;n-15\in Z\)
Vì 2 thừa số trên đều mang t.c chẵn lẻ
=> Tích của chúng là số chẵn
b/ \(n^2-n-1\)
\(\Leftrightarrow n\left(n-1\right)-1\)
Mà \(n;n-1\) là 2 số nguyên liên tiếp
=> sẽ có 1 chẵn, 1 lẻ
=> n (n - 1) là chẵn
=> n(n - 1) - 1 là lẻ
Nếu n=2k(k thuộc Z)
thì A=(2k-4)(2k-15)=số chẵn* số lẻ= số chẵn
Thì B=(2k)2-2k-1=số chẵn - số chẵn - số lẻ = số lẻ
Nếu n=2k+1(k thuộc Z)
thì A=(2k+1-4)*(2k+1-15)=(2k-3)*(2k-14)=số lẻ * số chẵn = số chẵn
thì B=(2k+1)(2k+1)-2k-1-1=số lẻ* số lẻ- số chẵn=số lẻ - số chẵn=số lẻ
Nếu n = 2k (k thuộc Z) thì:
A = (2k-4) (2k-15) = chẵn * lẻ = chẵn
B = (2k)2 - 2k - 1 = chẵn - chẵn - lẻ = lẻ
Nếu n = 2k+1 (k thuộc Z) thì:
A = (2k+1-4) (2k+1-15) = (2k-3) (2k-14) = lẻ * chẵn = chẵn
B = (2k+1) (2k+1) - 2k - 1 - 1 = lẻ * lẻ - chẵn = lẽ - chẵn = lẻ
n2 chia cho chia 3 dư 1 thì ta chứng minh (n2-1) chia hết cho 3
A = ( n - 4 ) ( n - 15 )
Do 4 và 15 không cùng là số chẵn mà cũng không cùng số lẻ nên n bằng bao nhiêu thì kết quả của n - 4 và n - 15 vẫn như vậy.
Mà chẵn * lẻ hay lẻ * chẵn đều bằng chẵn nên A là số chẵn.
A = ( n - 4 ) ( n - 15 )
Do 4 và 15 không cùng là số chẵn mà cũng không cùng số lẻ nên n bằng bao nhiêu thì kết quả của n - 4 và n - 15 vẫn như vậy.
Mà chẵn * lẻ hay lẻ * chẵn đều bằng chẵn nên A là số chẵn.
B = n2 - n - 1 = n ( n - 1 ) - 1
Do n và n - 1 là 2 số tự nhiên liền tiếp ( 1 số chẵn, 1 số lẻ ) nên kết quả của n2 - n là số chẵn. Nhưng 1 là số lẻ mà chẵn - lẻ = lẻ nên B là số lẻ.