K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2020

Khá dễ khi ta dùng đồng dư !

Vì n không chia hết cho 3 nên ta xét 2 dạng của n \(\hept{\begin{cases}n=3k+1\\n=3k+2\end{cases}}\left(k\inℕ\right)\)

Nếu \(n=3k+1\) thay vào ta được:

\(5^{2n}+5^n+1=5^{6k+2}+5^{3k+1}+1\)

\(=\left(5^3\right)^{2k}\cdot5^2+\left(5^3\right)^k\cdot5+1\)

\(=125^{2k}\cdot25+125^k\cdot5+1\)

\(\equiv1\cdot25+1\cdot5+1\equiv31\equiv0\left(mod31\right)\)

=> Thỏa mãn

Nếu \(n=3k+2\) thay vào ta được:

\(5^{2n}+5^n+1=5^{6k+4}+5^{3k+2}+1\)

\(=\left(5^3\right)^{2k}\cdot5^4+\left(5^3\right)^k\cdot5^2+1\)

\(=125^{2k}\cdot625+125^k\cdot25+1\)

\(\equiv1\cdot5+1\cdot25+1\equiv31\equiv0\left(mod31\right)\)

=> Thỏa mãn

Vậy với mọi n không chia hết cho 3 thì \(5^{2n}+5^n+1\) chia hết cho 31

17 tháng 12 2019

bạn lên app QuandA hỏi nha, gia sư sẽ cho bạn đáp án chính xác

17 tháng 12 2019

a) Ta có:

(5^2n+1) + (2^n+4) + (2^n+1) = (25^n).5 - 5.(2^n) + (2^n).( 5 + 2^4 +2) = 5.( 25^n - 2^n ) + 23.2^n chia hết cho 23. 
 

 
1 tháng 12 2015

a,=33.23.5-35

     =33.[23.5-32]

     =33.31 chia het cho 31

Vậy........

b,c tương tự nha bn