Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Không vì hạng tử \( 9x{y^4}\) có số mũ của biến x nhỏ hơn số mũ của biến x trong B.
b) Có. \(\begin{array}{l}A:B = \left( {9x{y^4} - 12{x^2}{y^3} + 6{x^3}{y^2}} \right):\left( { - 3x{y^2}} \right)\\ = 9x{y^4}:\left( { - 3x{y^2}} \right) - 12{x^2}{y^3}:\left( { - 3x{y^2}} \right) + 6{x^3}{y^2}:\left( { - 3x{y^2}} \right)\\ = - 3{y^2} + 4xy - 2{x^2}\end{array}\)
Bài 4 :
Thay x=y+5 , ta có :
a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65
=(y+5)*(y+7)+y^2-2y-2y^2-10y+65
=y^2+7y+5y+35-y^2-2y-2y^2-10y+65
= 100
Bài 5 :
A = 15x-23y
B = 2x-3y
Ta có : A-B
= ( 15x -23y)-(2x-3y)
=15x-23y-2x-3y
=13x-26y
=13x*(x-2y) chia hết cho 13
=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại
a) ta có:
x3-3x+5x-6=x3-x2+3x-2x2+2x-6
=x.(x2-x+3)-2.(x2-x+3)
=(x2-x+3)(x-2)
Vậy x3-3x2+5x-6 chia hết cho x-2
b)ta có:
x3-3x2+5x-6=x3-5x2+15x+2x2-10x+30-36
=x.(x2-5x+15)+2.(x2-5x+15)-36
=(x2-5x+15)(x+2)-36
Vậy x3-3x2+5x-6 chia cho x+2 được thương là x2-5x+15 dư -36
a) \(6{x^3}:3{x^2} = \left( {6:3} \right).\left( {{x^3}:{x^2}} \right) = 2x\)
b) * Khi \(m \ge n\)
* Để chia \(a{x^m}\) cho \(b{x^n}\) ta thực hiện phép chia a:b và \({x^m}:{x^n}\) rồi nhân 2 kết quả với nhau.
a) \(A\left(x\right)=2x^3-x^2-x+1\)
\(=\left(2x^3-4x^2\right)+\left(3x^2-6x\right)+\left(5x-10\right)+11\)
\(=\left(x-2\right).\left(2x^2+3x+5\right)+11\)
Vậy \(A\left(x\right):B\left(x\right)=2x^2+3x+5\) dư \(11\)
b) Để \(A\left(x\right)⋮B\left(x\right)\) thì \(11⋮B\left(x\right)\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\inơ\left\{13;3;2;-9\right\}\)
a) Đơn thức A chia hết cho đơn thức B:
\(A:B = 6{x^3}y:3{x^2}y = \left( {6:3} \right).\left( {{x^3}:{x^2}} \right).\left( {y:y} \right) = 2x\)
b) Đơn thức A không chia hết cho đơn thức B vì số mũ của biến y trong B lớn hơn số mũ của biến y trong A.