Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P: 42 không chia hết cho 5
Q: 42 cũng không chia hết cho 10
Nên mệnh đề đó là sai
42 ko chia hết cho 5
42 ko chia hết cho 10
nên mệnh đề này sai.
Tk cho mình nha ae!!!!!!!!!!!!! Ai tk mình thì mình tk lại.
\(2x^2+y^2+10x-4y\ge2xy-13\) (1)
\(\Leftrightarrow2x^2+y^2+10x-4y-2xy+13\ge0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4+x^2+6x+9\ge0\)
\(\Rightarrow\left(x-y\right)^2+2.\left(x-y\right).2+2^2+x^2+2.x.3+3^2\ge0\)
\(\Rightarrow\left(x-y+2\right)^2+\left(x+3\right)^2\ge0\)(2)
Ta thấy (2) luôn đúng mà \(\left(2\right)\Leftrightarrow\left(1\right)\)nên (1) luôn đúng
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}x-y+2=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}}\)
Đặt √x = t, x ≥ 0 => t ≥ 0.
Vế trái trở thành: t8 – t5 + t2 – t + 1 = f(t)
Nếu t = 0, t = 1, f(t) = 1 >0
Với 0 < t <1, f(t) = t8 + (t2 - t5)+1 - t
t8 > 0, 1 - t > 0, t2 - t5 = t3(1 – t) > 0. Suy ra f(t) > 0.
Với t > 1 thì f(t) = t5(t3 – 1) + t(t - 1) + 1 > 0
Vậy f(t) > 0 ∀t ≥ 0. Suy ra: x4 - √x5 + x - √x + 1 > 0, ∀x ≥ 0
\(\Leftrightarrow2\sqrt{x-2000}+2\sqrt{y-2001}+2\sqrt{z-2002}=x+y+z-6000\)
\(\Leftrightarrow z+y+z-2\sqrt{x-2000}+2\sqrt{y-2001}+2\sqrt{z-2002}-6000=0\)
\(\Leftrightarrow\left(\left(\sqrt{x-2000}\right)^2-2\sqrt{x-2000}+1\right)+\left(\left(\sqrt{y-2001}\right)^2-2\sqrt{y-2001}+1\right)+\left(\left(\sqrt{z-2002}\right)^2-2\sqrt{z-2002}+1\right)=0\)\(\Leftrightarrow\left(\sqrt{x-2000}-1\right)^2+\left(\sqrt{y-2001}-1\right)^2+\left(\sqrt{z-2002}-1\right)^2=0\)
\(\Leftrightarrow x=2001;y=2002;z=2003\)
Hướng dẫn trả lời:
Chọn C vì:
Mệnh đề I sai vì không có căn bậc hai của số âm
Mệnh đề IV sai vì √100 = 10 (căn bậc hai số học)
Các mệnh đề II và III đúng