Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+\left(m-2\right)x-8=0\)
\(\Delta=b^2-4ac=\left(m-2\right)^2-4.1.\left(-8\right)=\left(m-2\right)^2+32\)
Vì \(\left(m-2\right)^2\ge0\forall m\)
\(\Rightarrow\left(m-2\right)^2+32\ge32>0\forall m\)
Vậy phương trình luôn có hai nghiệm phân biệt với mọi m
Theo định lí vi-ét ta có:\(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=2-m\\x_1x_2=\frac{c}{a}=-8\end{cases}}\Rightarrow x_2=\frac{-8}{x_1}\)
Theo bài ra ta có:\(A=\left(x_1^2-1\right)\left(x_2^2-4\right)=\left(x_1^2-1\right)\left(\frac{64}{x_1^2}-4\right)=68-4\left(x_1^2+\frac{16}{x_1^2}\right)\le68-4.8=36\)
Dấu "=" xảy ra <=> \(x_1=\pm2\)
+Với \(x_1=2\Rightarrow m=4\)
+Với \(x_1=-2\Rightarrow m=0\)
Vậy \(A=\left(x_1^2-1\right)\left(x_2^2-4\right)\)đạt GTLN là 36 \(\Leftrightarrow m=0;m=4\)
+Nếu ai⋮30 thì ai5⋮30.
+Nếu ai chia 5 dư 1 thì ai5 chia 30 dư 1 (ai5 ≡ 15 ≡ 1 (mod 30))
+Nếu ai chia 5 dư 2 thì ai5 chia 30 dư 2 (ai5 ≡ 25 ≡ 2 (mod 30))
.
.
.
+Nếu ai chia 5 dư 29 thì ai5 chia 30 dư 29
Vậy ai5 luôn có cùng số dư với ai khi chia cho 30.
Do Tổng ai (i = 1..n) chia hết cho 30
Nên tổng ai5 (i = 1..n)chia hết cho 30.
Có vẻ cách này không hay lắm, nhưng kẹt thì đành làm vậy.