Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
a) \(\frac{n}{2n+1}\)
Gọi \(d=ƯCLN\left(n;2n+1\right)\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)
\(\Rightarrow\left(2n+1\right)-2n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n;2n+1\right)=1\)
\(\Rightarrow\)Phân số \(\frac{n}{2n+1}\)là phân số tối giản
b) \(\frac{2n+3}{4n+8}\)
Gọi \(d=ƯCLN\left(2n+3;4n+8\right)\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
Vì \(2n+3=\left(2n+2\right)+1=2\left(n+1\right)+1\)(không chia hết cho 2)
\(\Rightarrow d\ne2\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)
\(\Rightarrow\)Phân số \(\frac{2n+3}{4n+8}\)là phân số tối giản
a) Đặt \(d=\left(15n+1,30n+1\right)\).
Suy ra \(\hept{\begin{cases}15n+1⋮d\\30n+1⋮d\end{cases}}\Rightarrow2\left(15n+1\right)-\left(30n+1\right)=1⋮d\Rightarrow d=1\).
Ta có đpcm.
b) Đặt \(d=\left(n^3+2n,n^4+3n^2+1\right)\).
Suy ra \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+2n\right)=n^2+1⋮d\)
\(\Rightarrow\left(n^4+3n^2+1\right)-n^2\left(n^2+1\right)-2\left(n^2+1\right)=-1⋮d\)
Suy ra \(d=1\).
Suy ra đpcm.
Để chứng minh một phân số là tối giản, ta cần chứng minh ƯCLN (tử, mẫu) = 1
Bài giải
a) Ta có phân số: \(\frac{n+1}{3n+4}\)(n \(\inℕ\))
Gọi ƯCLN (n + 1; 3n + 4) là d (d \(\inℕ^∗\))
=> n + 1 \(⋮\)d; 3n + 4 \(⋮\)d
=> 3n + 4 - 3(n + 1) \(⋮\)d
=> 1 \(⋮\)d
=> ƯCLN (n + 1; 3n + 4) = 1
=> \(\frac{n+1}{3n+4}\)là phân số tối giản
=> ĐPCM
b) Ta có phân số: \(\frac{2n+3}{3n+5}\)(n \(\inℕ\))
Gọi ƯCLN (2n + 3; 3n + 5) là d (d \(\inℕ^∗\))
=> 2n + 3 \(⋮\)d; 3n + 5 \(⋮\)d
=> 2(3n + 5) - 3(2n + 3) \(⋮\)d
=> 1 \(⋮\)d
=> ƯCLN (2n + 3; 3n + 5) = 1
=> \(\frac{2n+3}{3n+5}\)là phân số tối giản
=> ĐPCM
a) Gọi (n+1,3n+4) là d ( d thuộc N* )
=> n+1 và 3n+4 đều chia hết cho d
=> (3n+4)-3(n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> (n+1,3n+4)=1 nên n+1 và 3n+4 là 2 SNT cùng nhau
=> P/s n+1/3n+4 tối giản với mọi n thuộc N (đpcm)
b) Gọi (2n+3,3n+5) là d (d thuộc N*)
=> 2n+3 chia hết cho d và 3n+5 chia hết cho d
=> (3n+5)-(2n+3) chia hết cho d
=> 2(3n+5)-3(2n+3) chia hết cho d
=> 6n+10-6n+9 chia hết cho d
=> d=1
=> (2n+3,3n+5)=1 nên 2n+3 và 3n+5 là 2 SNT cùng nhau
=> P/s 2n+3/3n+5 tối giản với mọi n thuộc N (đpcm)