K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
17 tháng 5 2021

\(A=19.2^{3n}+17=19.8^n+17\)

Với \(n=2k\)

\(A=19.16^k+17\equiv1.1^k+2\left(mod3\right)\equiv0\left(mod3\right)\)

mà \(A>3\)nên \(A\)là hợp số. 

Với \(n=4k+1\)

\(A=19.8^{4k+1}+17\equiv9.8^{4k}+4\left(mod13\right)\equiv9.1^k+4\left(mod13\right)\equiv0\left(mod13\right)\)

mà \(A>13\)nên \(A\)là hợp số. 

Với \(n=4k+3\)

\(A=19.8^{4k+3}+17=19.8^3.\left(8^4\right)^k+17\equiv3.1^k+2\left(mod5\right)\equiv0\left(mod5\right)\)

mà \(A>5\)nên \(A\)là hợp số. 

13 tháng 10 2019

Do p là số nguyên tố > 3 nên có thể có 2 dạng là 3k+1 và 3k+2

TH1: p = 3k+1

\(a=3\left(3k+1\right)+2+2020\cdot\left(3k+1\right)^2\)

\(\equiv2+1\cdot\left(1\right)^2\equiv0\)(Mod 3)

-> a chia hết cho 3

TH2: p = 3k+2

\(a=3\left(3k+2\right)+2+2020\cdot\left(3k+2\right)^2\)

\(\equiv2+1\cdot2^2\equiv0\)(Mod 3)

-> a chia hết cho 3

Vậy a là hợp số

14 tháng 10 2019

bn oi nhầm rồi

\(a=3n+2+2020p^2\) chứ ko phải \(a=3p+2+2020p^2\)

7 tháng 8 2016

B nguyên tố khác 3 nên b=3k+1 hoặc b=3k+2

B=3k+1 thì A =3n+6027k+2010 chia hét cho 3

B=3k+2 thì A=

24 tháng 7 2016

Ta xét hai trường hợp : 

1. n = 1 => A = 5 là số nguyên tố.

2. Với n là số nguyên dương lớn hơn 1 và n chẵn , dễ thấy A chia hết cho 2 và A > 2 => A là hợp số

3. Với n là số nguyên dương lớn hơn 1 và n lẻ , ta biểu diễn : \(A=\left(n^4-1\right)+\left(4^n+1\right)=\left(n^4-1\right)+\left(4+1\right).B\)với B là một biểu thức trong phân tích \(4^n+1\)thành nhân tử.

Xét các số nguyên n không chia hết cho 5 sẽ có dạng : \(n=5k\pm1,n=5k\pm2\)(\(k\in N\))

n2 có một trong hai dạng : \(n^2=5k+1\)\(n^2=5k+4\)

ncó một dạng duy nhất :  \(n^4=5k+1\)

Do đó : \(n^4-1\) chia hết cho 5. Lại có \(\left(4+1\right)B=5B\) cũng chia hết cho 5.

Vậy ta có \(A⋮5,A>5\) => A là hợp số.

Vậy A là số nguyên tố nếu n = 1 , A là hợp số nếu n > 1 

21 tháng 8 2021

Để A \(\inℤ\)thì 3n + 2 là số chính phương 

mà (3n + 2) : 3 dư 2 

=> 3n + 2 không là số chính phương 

=> \(A\notinℤ\forall n\inℕ^∗\)