Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(\frac{x-3}{3xy}\)+\(\frac{5x+3}{3xy}\)= \(\frac{6x}{3xy}\)=\(\frac{3}{y}\)
2/\(\frac{5x-7}{2x-3}\)+\(\frac{4-3x}{2x-3}\)=\(\frac{2x-3}{2x-3}\)=1
3/\(\frac{11x-7}{3-5x}\)-\(\frac{6x+4}{5x-3}\)=\(\frac{11x-7}{3-5x}\)+\(\frac{6x+4}{3-5x}\)=\(\frac{17x-3}{3-5x}\)
4/\(\frac{3}{2x+6}\)-\(\frac{x-6}{2x^2+6x}\)=\(\frac{3x}{x\left(2x+6\right)}\)-\(\frac{x-6}{x\left(2x+6\right)}\)=\(\frac{2x-6}{x\left(2x+6\right)}\)
5/\(\frac{1}{2x-10}\)+\(\frac{2x}{3x^2-15x}\)=\(\frac{1}{2\left(x-5\right)}\)+\(\frac{2x}{3x\left(x-5\right)}\)=\(\frac{3x}{6x \left(x-5\right)}\)+\(\frac{4x}{6x\left(x-5\right)}\)
=\(\frac{7x}{6x\left(x-5\right)}\)=\(\frac{7}{6\left(x-5\right)}\)
a) \(P=\dfrac{2x-4}{x^2-4x+4}-\dfrac{1}{x-2}=\dfrac{2\left(x-2\right)}{\left(x-2\right)^2}-\dfrac{1}{x-2}\)
\(=\dfrac{2x-4-\left(x-2\right)}{\left(x-2\right)^2}=\dfrac{x-2}{\left(x-2\right)^2}=\dfrac{1}{x-2}\)
ĐKXĐ: \(x\ne2\) nên với x = 2 thì P không được xác định
\(Q=\dfrac{3x+15}{x^2-9}+\dfrac{1}{x+3}-\dfrac{2}{x-3}\)
\(=\dfrac{3\left(x+5\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}-\dfrac{2}{x-3}\)
\(=\dfrac{3x+15+x-3-2\left(x+3\right)}{x^2-9}=\dfrac{2x+6}{x^2-9}=\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{2}{x-3}\)
Tại x = 2 thì \(Q=\dfrac{2}{2-3}=\dfrac{2}{-1}=-2\)
b) Để P < 0 tức \(\dfrac{1}{x-2}< 0\) mà tứ là 1 > 0
nên để P < 0 thì x - 2 < 0 \(\Leftrightarrow x< 2\)
Vậy x < 2 thì P < 0
c) Để Q nguyên tức \(\dfrac{2}{x-3}\) phải nguyên
mà \(\dfrac{2}{x-3}\) nguyên khi x - 3 \(\inƯ_{\left(2\right)}\)
hay x - 3 \(\in\left\{-2;-1;1;2\right\}\)
Lập bảng :
x - 3 -1 -2 1 2
x 2 1 4 5
Vậy x = \(\left\{1;2;4;5\right\}\) thì Q đạt giá trị nguyên
a) \(\dfrac{20x^3}{11y^2}.\dfrac{55y^5}{15x}=\dfrac{20.5.11.x.x^2.y^2.y^3}{11.3.5.x.y^2}=\dfrac{20x^2y^3}{3}\)
b) \(\dfrac{5x-2}{2xy}-\dfrac{7x-4}{2xy}=\dfrac{5x-2-7x+4}{2xy}=\dfrac{-2x+2}{2xy}=\dfrac{2\left(1-x\right)}{2xy}=\dfrac{1-x}{xy}\)
\(a,4x-6< 7x-12\)
\(\Leftrightarrow6< 3x\Leftrightarrow x>2\)
\(b,\frac{3x-7}{4}\ge2-\frac{x+5}{3}\)
\(\Leftrightarrow3\left(3x-7\right)\ge24-4\left(x+5\right)\)
\(\Leftrightarrow13x\ge25\Leftrightarrow x\ge\frac{25}{13}\)
\(c,\frac{3x-8}{-7}\ge1-\frac{x+2}{-3}\)
\(\Leftrightarrow-3\left(3x-8\right)\ge21+7\left(x+2\right)\)
\(\Leftrightarrow-16x\ge11\)
\(\Leftrightarrow x\le-\frac{11}{16}\)
\(d,-12-8x>3+2x-\left(5-7x\right)\)
\(\Leftrightarrow14>17x\Leftrightarrow x< \frac{14}{17}\)
\(e,-1+\frac{x-1}{-3}\le\frac{x+2}{-9}\)
\(\Leftrightarrow-9-3\left(x-1\right)\le-\left(x+2\right)\)
\(\Leftrightarrow-2x\le4\Leftrightarrow x\ge-2\)
\(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)
\(\Leftrightarrow\frac{\left(9x-0,7\right)\cdot7}{4\cdot7}-\frac{\left(5x-1,5\right)\cdot4}{7\cdot4}=\frac{7x-1,1-2+10x}{6}\)
\(\Leftrightarrow\frac{63x-4,9-20x+6}{28}=\frac{7x-1,1-2+10x}{6}\)
\(\Leftrightarrow\left(63x-4,9-20x+6\right)\cdot6=28\left(7x-1,1-2+10x\right)\)
\(\Leftrightarrow378x-120x+6,6=196x-86,8+280x\)
\(\Leftrightarrow378x-120x-196x-280x=-86,8-6,6\)
\(\Leftrightarrow-218x=-93,4\)
\(\Leftrightarrow x=\frac{467}{1090}\)
1)
ĐKXĐ: x\(\ne\)3
ta có :
\(\frac{x^2-6x+9}{2x-6}=\frac{\left(x-3\right)^2}{2\left(x-3\right)}=\frac{x-3}{2}\)
để biểu thức A có giá trị = 1
thì :\(\frac{x-3}{2}\)=1
=>x-3 =2
=>x=5(thoả mãn điều kiện xác định)
vậy để biểu thức A có giá trị = 1 thì x=5
1)
\(A=\frac{x^2-6x+9}{2x-6}\)
A xác định
\(\Leftrightarrow2x-6\ne0\)
\(\Leftrightarrow2x\ne6\)
\(\Leftrightarrow x\ne3\)
Để A = 1
\(\Leftrightarrow x^2-6x+9=2x-6\)
\(\Leftrightarrow x^2-6x-2x=-6-9\)
\(\Leftrightarrow x^2-8x=-15\)
\(\Leftrightarrow x=3\) (loại vì không thỏa mãn ĐKXĐ)
\(1-5x\le2x+6\)
\(\Leftrightarrow-7x\le5\)
\(\Leftrightarrow x\ge-\frac{5}{7}\)
Vậy bất phương trình có tập nghiệm là: S ={x| \(x\ge-\frac{5}{7}\)}
\(\frac{x-2}{3}>\frac{7x+9}{5}\)
\(\Leftrightarrow5\left(x-2\right)>3\left(7x+9\right)\)
\(\Leftrightarrow5x-10>21x+27\)
\(\Leftrightarrow-16x>37\)
\(\Leftrightarrow x< -\frac{37}{16}\)
Vậy bất phương trình có tập nghiệm là: S ={x| \(x< -\frac{37}{16}\)}