Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-1\right|+2018\)
ta có :
\(\left|x-1\right|\ge0\)
\(\Rightarrow\left|x-1\right|+2018\ge0+2018\)
\(\Rightarrow\left|x-1\right|+2018\ge2018\)
dấu "=" xảy ra khi :
\(\left|x-1\right|=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
vậy MinA = 2018 khi x = 1
Bạn nào thông minh giải cả 3 câu hộ mình luôn nha. mk đang cần gấp các bạn ơi
\(B=\frac{x^2+y^2+3}{x^2+y^2+2}=1+\frac{1}{x^2+y^2+2}\)
VÌ\(x^2\ge0;y^2\ge0\Rightarrow x^2+y^2\ge0\Rightarrow x^2+y^2+2\ge2\)\(\Rightarrow\frac{1}{x^2+y^2+2}\le\frac{1}{2}\Rightarrow B=1+\frac{1}{x^2+y^2+2}\le1+\frac{1}{2}=\frac{3}{2}\)
\(B=\frac{3}{2}\Leftrightarrow\hept{\begin{cases}x^2=0\\y^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)
Vậy: \(maxB=\frac{3}{2}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)
x^2+y^2+3 1
B=------------------= 1+ ------------------
x^2+y^2+2 x^2+y^2+2
Để B lớn nhất thì 1/x^2+y^2+2 là số nguyên dương lớn nhất
=>M=x^2+y^2+2 là số nguyên dương bé nhất =1
=> x^2+y^2+2=1
=> x^2+y^2=-1
=>1/x^2+y^2+2=1/2-1=1(lớn nhất)
Vậy giá trị lớn nhất của B là:
B=1+1=2
\(P=-x^2-8x+5\)
\(=-x^2-8x-16+21\)
\(=-\left(x^2+8x+16\right)+21\)
\(=21-\left(x+4\right)^2\)
\(\left(x+4\right)^2\ge0\)
\(-\left(x+4\right)^2\le0\)
\(21-\left(x+4\right)^2\le21\)
\(P_{max}=21\Leftrightarrow x=-4\)