Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Bài làm:
\(3\left(2x-1\right)^2\ge0\left(\forall x\right)\)
\(\Rightarrow5-3\left(2x-1\right)^2\le5\left(\forall x\right)\)
"=" xảy ra khi: \(2x-1=0\Rightarrow x=\frac{1}{2}\)
a) Xét các trường hợp
- Với x \(\ge\frac{1}{2}\)thì 2x-1\(\ge0\)nên | 2x -1 | = 2x-1 . Ta có :
\(A=2x-1-x+5=x+4\)
- Với x < \(\frac{1}{2}\) thì 2x - 1 < 0 nên | 2x -1 | =1 - 2x . Ta có :
\(A=1-2x-x+5=-3x+6\)
b) Trường hợp 1 : \(\hept{\begin{cases}x+4=4\\x\ge\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x\ge\frac{1}{2}\end{cases}}}\)
=> Không tồn tại x
Trường họp 2 : \(\hept{\begin{cases}-3+6=4\\x< \frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{2}{3}\\x< \frac{1}{2}\end{cases}}}\)
=> Không tồn tại x
Vậy ____
1/ \(A=3\left|2x-1\right|-5\)
Ta có: \(\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|-5\ge-5\)
Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất
Vậy \(Min_A=-5\)
\(C=\frac{2\left(x-1\right)^2+1}{x^2-2x+3}=\frac{2\left(x-1\right)^2+1}{\left(x^2-2x+1\right)+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=\frac{2\left[\left(x-1\right)^2+2\right]-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)
Để \(2-\frac{3}{\left(x-1\right)^2+2}\) đạt GTNN <=> \(\left(x-1\right)^2+2\)đạt GTNN
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2\ge2\) có GTNN là 2 tại x = 1
\(\Rightarrow B_{min}=2-\frac{3}{\left(1-1\right)^2+2}=\frac{1}{2}\) tại \(x=1\)
-|x+5|<=0 với mọi x
=>3,5-|x+5|<=3,5
=>E>=1/3,5=1:7/2=2/7
dấu "=" xảy ra khi và chỉ khi x+5=0
=>x=-5
vậy GTNN của E=2/7 tại x=-5
Với các giá trị của x sao cho \(2x-1\ne0\) thì \(\left|2x-1\right|>0\). Khi đó
\(A=5-\left|2x-1\right|< 5\)
Vớ giá trị của x mà \(2x-1=0\) thì \(\left|2x-1\right|=0\). Khi đó
\(A=5-0=5\)
Vậy, nếu \(2x-1=0\), tức là với \(x=\frac{1}{2}\) thì A đạt giá trị lớn nhất.
Có: \(\left|2x-1\right|\ge0\forall x\) \(\Rightarrow-\left|2x-1\right|\le0\forall x\)
\(\Rightarrow5-\left|2x-1\right|\le5\forall x\)
Dấu ''='' xảy ra khi |2x - 1| = 0
=> 2x - 1 = 0
=> 2x = 1
=> \(x=\frac{1}{2}\)
Vậy với x = \(\frac{1}{2}\) thì biểu thức A có giá trị lớn nhất là 5