K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2017

Hàm số là hàm số bậc nhất khi và chỉ khi:\(\hept{\begin{cases}m^2+m-2=0\left(1\right)\\m^2+mn-2n^2\ne0\left(2\right)\end{cases}}\).
Giải(1):     \(m^2+m-2=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}\).
Thay \(m=1\) vào (2) ta được \(1^2+1.n-2n^2\ne0\)\(\Leftrightarrow\left(2n+1\right)\left(1-n\right)\ne0\)\(\Leftrightarrow\hept{\begin{cases}n\ne1\\n\ne-\frac{1}{2}\end{cases}}\).

Thay \(m=-2\) vào (2) ta được:
 \(\left(-2\right)^2+\left(-2\right)n-2n^2\ne0\)
\(\Leftrightarrow-2n^2-2n+4\ne0\)
\(\Leftrightarrow\left(n-1\right)\left(n+2\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}n\ne1\\n\ne-2\end{cases}}\).
Vậy hàm số là hàm số bậc nhất khi và chỉ khi: \(m=1\) và \(\hept{\begin{cases}n\ne1\\n\ne-\frac{1}{2}\end{cases}}\) hoặc \(m=-2\) và \(\hept{\begin{cases}n\ne1\\n\ne-2\end{cases}}\).

20 tháng 11 2021

Ta thấy rõ \(\left(m^2-9\right)x^2\)là hạng tử bậc hai, nên để hàm số đã cho là hsbn thì \(m^2-9=0\Leftrightarrow\left(m-3\right)\left(m+3\right)=0\Leftrightarrow\orbr{\begin{cases}m=3\\m=-3\end{cases}}\)

NM
18 tháng 9 2021

Để hàm ssoo đã cho là hàm số bậc nhất thì 

a\(\frac{m}{2}\ne0\Leftrightarrow m\ne0\)
b\(3m+1\ne0\Leftrightarrow m\ne-\frac{1}{3}\)
c\(\hept{\begin{cases}\sqrt{5-m}\ne0\\5-m\ge0\end{cases}\Leftrightarrow m< 5}\)
24 tháng 11 2019

Để hàm trên là hàm bậc nhất thì cần điêu kiện sau :

\(\hept{\begin{cases}m^2-5m+6=0\\m-1\ne0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m-2\right)\left(m-3\right)=0\\m\ne1\end{cases}}\)

Do đó : \(m=2\) hoặc \(m=3\)

Chúc bạn học tốt !!!