Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/ \(\Delta'=m^2-5\left(-2m+15\right)=0\)
\(\Leftrightarrow m^2+10m-75=0\)
\(\Rightarrow\left[{}\begin{matrix}m=5\\m=-15\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}m\ne0\\\Delta'=4\left(m-1\right)^2+8m=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\4m^2+4=0\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn điều kiện đề bài
Để các pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
a/ \(\left\{{}\begin{matrix}m\ne0\\\left(m-1\right)^2-2m=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m^2-4m+1=0\end{matrix}\right.\) \(\Rightarrow m=2\pm\sqrt{3}\)
b/ \(\Delta=\left(m+1\right)^2-48=0\)
\(\Leftrightarrow\left(m+1\right)^2=48\)
\(\Leftrightarrow\left[{}\begin{matrix}m+1=4\sqrt{3}\\m+1=-4\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow m=-1\pm4\sqrt{3}\)
a) m \(\ne\)0; \(\Delta'=\left(m-1\right)^2-2m=0\Leftrightarrow m^2-4m+1=0\Leftrightarrow\left(m-2\right)^2=3\)
=>m=2+ \(\sqrt{3}\) hoặc m=2 -\(\sqrt{3}\) (TM)
b) \(\Delta=\left(m+1\right)^2-4.3.4=0\)=>m =-1 +4\(\sqrt{3}\) hoặc m = -1 - 4\(\sqrt{3}\)
a. 5x2 + 2mx – 2m +15 =0 (1)
Ta có: Δ'=m2 – 5.(-2m +15) = m2 +10m -75
Phương trình (1) có nghiệm kép khi và chỉ khi:
Δ'= 0 ⇔ m2 + 10m – 75 = 0
Δ'm = 52 -1.(-75) = 25 +75 = 100 > 0
√(Δ'm) = √100 =10
Phương trình có 2 nghiệm phân biệt:
Vậy m =5 hoặc m=-15 thì phương trình đã cho có nghiệm kép
b. mx2 – 4(m -1)x -8 =0 (2)
Phương trình (2) có nghiệm kép khi và chỉ khi: m≠ 0 và Δ'=0
Ta có: Δ'=[-2(m-1)]2 – m(-8)=4(m2 -2m +1) +8m
=4m2– 8m +4 +8m = 4m2 +4
Vì 4m2 +4 luôn luôn lớn hơn 0 nên Δ' không thể bằng 0 .Vậy không có giá trị nào của m để phương trình có nghiệm kép