K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

a. x2 + x + 1

= x2 + 2.x.1/2 + 1/4 + 3/4

= (x + 1/2)2 + 3/4

Mà (x + 1.2)2 \(\ge\)0

=> (x + 1/2)2 + 3/4 \(\ge\)3/4

Vậy GTNN của đa thức là 3/4 <=> x + 1/2 = 0 <=> x = -1/2

b. (x - 1)(x + 2)(x + 3)(x + 6)

= (x - 1)(x + 6)(x + 2)(x + 3)

= (x2 + 6x - x - 6)(x2 + 3x + 2x + 6)

= (x2 + 5x - 6)(x2 + 5x + 6)

= (x2 + 5x)2 - 62

= (x2 + 5x)2 - 36

Mà (x2 + 5x)\(\ge\)0

=> (x2 + 5x)2 - 36 \(\ge\)-36

Vậy đa thức có GTNN là -36 <=> x2 + 5x = 0 <=> x.(x + 5) = 0 <=> x = 0 hoặc x + 5 = 0 <=> x = 0 hoặc x = -5.

17 tháng 9 2016

a. x2 + x + 1

= x2 + 2.x.1/2 + 1/4 + 3/4

= (x + 1/2)2 + 3/4

Mà (x + 1.2)2 0

=> (x + 1/2)2 + 3/4 3/4

Vậy GTNN của đa thức là 3/4 <=> x + 1/2 = 0 <=> x = -1/2

b. (x - 1)(x + 2)(x + 3)(x + 6)

= (x - 1)(x + 6)(x + 2)(x + 3)

= (x2 + 6x - x - 6)(x2 + 3x + 2x + 6)

= (x2 + 5x - 6)(x2 + 5x + 6)

= (x2 + 5x)2 - 62

= (x2 + 5x)2 - 36

Mà (x2 + 5x)0

=> (x2 + 5x)2 - 36 -36

Vậy đa thức có GTNN là -36 <=> x2 + 5x = 0 <=> x.(x + 5) = 0 <=> x = 0 hoặc x + 5 = 0 <=> x = 0 hoặc x = -5.

22 tháng 6 2015

1)P(x)=4x-x2+1=-(x2-4x+4)+5=-(x-2)2+5

Do (x-2)2>0

=>-(x-2)2<0

=>P(x)=-(x-2)2+5<5

=>Max P=5<=>(x-2)2=0<=>x=2

2)A(x)=x2-4x+y2-8y+6=(x2-4x+4)+(y2-8y+16)-14

=(x-2)2+(y-4)2-14

Do (x-2)2>0

(y-4)2>0

=>(x-2)2+(y-4)2>0

=>A(x)=(x-2)2+(y-4)2-14>-14

=>Min A=-14<=>(x-2)2=0 và (y-4)2=0<=>x=2 và y=4

22 tháng 6 2015

P(x) = 4x - x^2 + 1

         = - ( x^2 - 4x + 10) 

       =  -( x^2 - 2.x.2 + 4 + 6)

       = -(  x- 2 )^2 - 6 

Vậy GTLN của p là -6 tại x  - 2 = 0 => x = 2 

VẬy x = 2 thì .... 

B2)

 A(x) = x^2 - 4x + y^2 - 8y + 6 

     = x^2 - 2.x . 2 + 4 + y^2 - 2.y.4 + 16 - 14

     =( x - 2)^2 + (y - 4)^2 - 14 

VẬy GTNN của bt là -14 

              khi x - 2 = 0 => x = 2 

                    y - 4= 0 => y=4 

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

5 tháng 7 2016

1/B=\(-\left(x^2+2y^2+2xy-2y\right)\)

     =\(-\left(x^2+2xy+y^2+y^2-2y+1-1\right)\)

     =\(-\left[\left(x+y\right)^2+\left(y-1\right)^2\right]+1\)<=1

Bmax=1 khi x+y=0 và y-1=0=>x=-1;y=1

2/C=\(x^2+x+\frac{1}{4}+y^2+y+\frac{1}{4}+\frac{1}{2}\)

      =\(\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{2}\)>=\(\frac{1}{2}\)

Cmin=\(\frac{1}{2}\)khi \(x+\frac{1}{2}=0\)và \(y+\frac{1}{2}=0\)=>\(x=y=\frac{-1}{2}\)

31 tháng 10 2015

BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4

MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2

    =>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2

   =>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2

   b,A=y(y+1)(y+2)(y+3)

=>A =[y(y+3)] [(y+1)(y+2)]

  =>A=(y2+3y) (y2+3y+2)

Đặt X=y2+3y+1

=>A=(X+1)(X-1)

=>A=X2-1

=>A=(y2+3y+1)2-1

MÀ (y2+3y+1)2>=0 với mọi giá trị của y

=>(y2+3y+1)2-1>=-1

Vậy GTNN của Alà -1

c,B=x3+y3+z3-3xyz

=>B=(x3+y3)+z3-3xyz

=>B=(x+y)3-3xy(x+y)+z3-3xyz

=>B=[(x+y)3+z3]-3xy(x+y+z)

=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)

=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)

=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)

30 tháng 12 2020

 bbgfhfygfdsdty64562gdfhgvfhgfhhhhh

\hvhhhggybhbghhguyg