K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 8 2021

Ta có:

\(\left(\sqrt{a}.\dfrac{\sqrt{a}}{\sqrt{4a+3bc}}+\sqrt{b}\dfrac{\sqrt{b}}{\sqrt{4b+3ac}}+\sqrt{c}\dfrac{\sqrt{c}}{\sqrt{4c+3ab}}\right)^2\le\left(a+b+c\right)\left(\dfrac{a}{4a+3bc}+\dfrac{b}{4b+3ac}+\dfrac{c}{4c+3ab}\right)\)

\(=2\left(\dfrac{a}{4a+3bc}+\dfrac{b}{4b+3ac}+\dfrac{c}{4c+3ab}\right)\)

Nên ta chỉ cần chứng minh:

\(\dfrac{a}{4a+3bc}+\dfrac{b}{4b+3ac}+\dfrac{c}{4c+3ab}\le\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{4a}{4a+3bc}+\dfrac{4b}{4b+3ac}+\dfrac{4c}{4c+3ab}\le2\)

\(\Leftrightarrow\dfrac{3bc}{4a+3bc}+\dfrac{3ac}{4b+3ac}+\dfrac{3ab}{4c+3ab}\ge1\)

\(\Leftrightarrow\dfrac{bc}{4a+3bc}+\dfrac{ac}{4b+3ac}+\dfrac{ab}{4c+3ab}\ge\dfrac{1}{3}\)

Thật vậy, ta có:

\(VT=\dfrac{\left(bc\right)^2}{4abc+3\left(bc\right)^2}+\dfrac{\left(ca\right)^2}{4abc+3\left(ac\right)^2}+\dfrac{\left(ab\right)^2}{4abc+3\left(ab\right)^2}\)

\(VT\ge\dfrac{\left(ab+bc+ca\right)^2}{3\left(ab\right)^2+3\left(bc\right)^2+3\left(ca\right)^2+12abc}=\dfrac{\left(ab+bc+ca\right)^2}{3\left(ab\right)^2+3\left(bc\right)^2+3\left(ca\right)^2+6abc\left(a+b+c\right)}\)

\(VT\ge\dfrac{\left(ab+bc+ca\right)^2}{3\left(ab+bc+ca\right)^2}=\dfrac{1}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=...\)

2 tháng 7 2016

Bài 1:

Đặt \(a^2=x;b^2=y;c^2=z\)

Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)

Áp dụng BĐT cô si ta có:

\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)

\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)

Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)

Cộng lại ta được:

\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)

Sau đó bình phương hai vế rồi

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng

Vậy...

Bài 2:

Trước hết ta chứng minh bất đẳng thức sau:

\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)

Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau: 

\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)

\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)

\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)

Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)

Từ đó ta có:

\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)

Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có 

\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)

Dấu = xảy ra khi a=b=c 

c bạn tự làm nhé mình mệt rồi :D

2 tháng 7 2016

- Ôi má ơi, má patient dử dậy :)

đặt \(S=\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\)

\(=\frac{a^3}{4a^2b^2+a^2}+\frac{b^3}{4b^2c^2+b^2}+\frac{c^3}{4a^2c^2+c^2}\ge\frac{\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2}{4a^2b^2+4b^2c^2+4c^2a^2+a^2+b^2+c^2}\)

xét hiệu:

1-4(a2b2+b2c2+c2a2)-a2-b2-c2

=2ab+2bc+2ca-4(a2b2+b2c2+c2a2)

=2ab(1-2ab)+2bc(1-2bc)+2ca(1-2ca)

ta có:

\(2ab\le\frac{\left(a+b\right)^2}{2}\le\frac{1}{2};2bc\le\frac{\left(b+c\right)^2}{2}\le\frac{1}{2};2ca\le\frac{\left(c+a\right)^2}{2}\le\frac{1}{2}\)

\(\Rightarrow2ab\left(1-2ab\right);2bc\left(1-2bc\right);2ca\left(1-2ca\right)\ge0\)

\(\Rightarrow1\ge4\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2\)

\(\Rightarrow\frac{\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2}{4\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)

\(\Rightarrow\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)

=>đpcm

dấu"=" xảy ra khi 1 số=1;2 số còn lại =0

19 tháng 7 2017

có 1 cách mà xài SOS xấu lắm chơi ko :))

25 tháng 7 2017

tìm thấy rồi Tổng hợp kỹ thuật chứng minh bất đẳng thức-Tập 2: Luyện thi học sinh giỏi toán - Tổng hợp - Google Sách

15 tháng 4 2020

Đặt vế trái của bất đẳng thức là M

30 tháng 11 2019

Ta có: \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}=\frac{a^2+ab+1}{\sqrt{a^2+ab+2ab+c^2}}\ge\frac{a^2+ab+1}{\sqrt{a^2+ab+a^2+b^2+c^2}}=\sqrt{a^2+ab+1}\)

\(\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}=\sqrt{\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+a^2+c^2}\)

\(=\frac{1}{\sqrt{5}}.\sqrt{\left(\frac{9}{4}+\frac{3}{4}+1+1\right)\left(\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+a^2+c^2\right)}\)

\(\ge\frac{1}{\sqrt{5}}\sqrt{\left(\frac{3}{2}\left(a+\frac{b}{2}\right)+\frac{3}{2}b+a+c\right)^2}\)

\(=\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)

=> \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)

Tương tự ta cũng chứng minh đc:

 \(\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}b+\frac{3}{2}c+a\right)\)

\(\frac{c^2+ca+1}{\sqrt{c^2+3ca+b^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}c+\frac{3}{2}a+b\right)\)

=> \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}+\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}+\frac{c^2+ca+1}{\sqrt{c^3+3ca+b^2}}\ge\frac{1}{\sqrt{5}}\left(5a+5b+5c\right)\)

\(=\sqrt{5}\left(a+b+c\right)\)

Dấu "=" xảy ra <=> a = b = c =\(\frac{1}{\sqrt{3}}\)