K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)

\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)

Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 1:

$\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Khi đó:

\(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2(bt)^2-3.bt.b+5b^2}{2(bt)^2+3bt.b}=\frac{b^2(2t^2-3t+5)}{b^2(2t^2+3t)}\)

$=\frac{2t^2-3t+5}{2t^2+3t}(1)$
\(\frac{2c^2-3cd+5d^2}{2c^2+3cd}=\frac{2(dt)^2-3.dt.d+5d^2}{2(dt)^2+3dt.d}=\frac{d^2(2t^2-3t+5)}{d^2(2t^2+3t)}=\frac{2t^2-3t+5}{2t^2+3t}(2)\)

Từ $(1);(2)$ suy ra đpcm.

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 2:

Từ $\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab$. Khi đó:

$\frac{b^2-c^2}{a^2+c^2}=\frac{b^2-ab}{a^2+ab}=\frac{b(b-a)}{a(a+b)}$ (đpcm)

22 tháng 4 2018

áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{a+2b}=\dfrac{b}{b+2c}=\dfrac{c}{c+2c}\)

\(=\dfrac{a+b+c}{a+2b+b+2c+c+2a}\)

\(=\dfrac{a+b+c}{3a+3b+3c}=\dfrac{a+b+c}{3\left(a+b+c\right)}\)

mà các số \(\dfrac{a}{a+2b}=\dfrac{b}{b+2b}=\dfrac{c}{c+2a}\) là số nguyên dương nên a,b,c là các số nguyên dương

\(\Rightarrow\) (a+b+c)\(⋮\) 3 (ĐPCM)

21 tháng 4 2018

giup mik vs!!!

11 tháng 4 2017

Mình xem lại đúng là hai đề có khác tuy nhiên bản chất giống nhau kiểu như thay số khác thôi

Biểu thức cần c/m bài trước: \(B_{cu}=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)

Biểu thức cần C/m bài này: \(A=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

ý bạn cái mẫu không giống nhau:

Không chứng minh lại cái này nữa \(\dfrac{x}{y}< \dfrac{x+p}{x+p}\forall x,y,p>0;\left(x< y\right)\)(*) có thể quay lại câu trước xem cách chứng minh (*). ok

\(\left\{{}\begin{matrix}\dfrac{a}{b+c}< \dfrac{a+a}{a+b+c}\\\dfrac{b}{c+a}< \dfrac{b+b}{a+b+c}\\\dfrac{c}{c+a}< \dfrac{c+c}{a+b+c}\end{matrix}\right.\) công hết lai

\(VT=A< VP=\dfrac{2a+2b+2c}{a+b+c}=2\)

Bạn thấy hai bài giống nhau chưa

OK

10 tháng 4 2017

cái này có quá nhiều rồi bạn bấm vào cái nút góc trên tay phải hình mũi tên quay xuống thấy --> tha hồ lựa chọn

đừng đăng câu khi quá nhiều.

đấy là ý kiến riêng mình thấy vậy

và khuyên các bạn giải bài gặp bài lập lại nhiều quá đừng giải nữa => nhàm chán chẳng có hứng gì

9 tháng 2 2019

Câu 1.
(7n-8)/(2n-3) = (7n - 21/2 + 5/2)/(2n - 3) = [(7/2)(2n-3) + 5/2]/(2n-3) =
= 7/2 + 5/(4n-6)
Phân số đã cho có GTLN khi 5/(4n-6) có GTLN, tức là khi 4n-6 có giá trị dương nhỏ nhất (với n là stn) hay n = 2
Trả lời : n = 2 (khi đó phân số có GTLN là 7/2 + 5/2 = 6)

9 tháng 2 2019

1

Đặt \(A=\dfrac{7n-8}{2n-3}\)

Ta có \(2A=\dfrac{2\left(7n-8\right)}{2\left(2n-3\right)}=\dfrac{14n-16}{2\left(2n-3\right)}=\dfrac{7\left(2n-3\right)+5}{2\left(2n-3\right)}\)

\(=\dfrac{7}{2}+\dfrac{5}{2\left(2n-3\right)}\)

A lớn nhất \(\Leftrightarrow\) 2A lớn nhất \(\Leftrightarrow\dfrac{5}{2\left(2n-3\right)}\) lớn nhất

=> 2n-3 là số dương nhỏ nhất

=> 2n-3 = 1

=> 2n =4

=> n = 2

Thay n = 2 vào A, ta được A = 6

Vậy GTLN của A =6 khi n =2

2)

Ta có p(x) chia hết cho 5 với mọi x nguyên

=> p (0) chia hết cho 5

\(\Leftrightarrow d⋮5\left(1\right)\)

p(1) \(⋮5\)

=> a+b+c+d \(⋮5\)

Mà d chia hết cho 5 => \(a+b+c⋮5\)

p(-1) \(⋮5\)

\(\Rightarrow-a+b-c⋮5\)

Ta có p(1)+p(2) chia hết cho 5

=> a+b+c -a +b-c \(⋮5\)

=> 2b \(⋮5\)

=. b chia hết cho 5 (2)

Vì a+b+c \(⋮5\) , b \(⋮5\)

\(\Rightarrow a+c⋮5\) (*)

Ta có p(2) = 8a+4b+2c+d

p (2) \(⋮5\)

=>8a + 2c chia hết cho 5 (**)

Từ * và ** suy ra a và c đều chia hết cho 5 ( vì 8 và 2 \(⋮̸\)5, muốn 8a+2c \(⋮5\) thì cả a và c đều phải chia hết cho 5) (3)

Từ (1), (2),(3) suy ra ĐPCM

c) Câu này tớ không nhớ :)))

19 tháng 4 2018

Tui không giỏi hình cho lắm nhưng thoi tham khảo nhé

Theo bất đẳng thức tam giác ta có \(\left\{{}\begin{matrix}a+b>c\\b+c>a\\a+c>b\end{matrix}\right.\)

Lại có công thức : \(\dfrac{a}{b}< \dfrac{a+m}{b+m}\) \(\left(\dfrac{a}{b}< 1;a,b,m>0\right)\)

Suy ra :

\(\dfrac{a}{b+c}< \dfrac{a+a}{a+b+c}=\dfrac{2a}{a+b+c}\)

\(\dfrac{b}{a+c}< \dfrac{b+b}{a+b+c}=\dfrac{2b}{a+b+c}\)

\(\dfrac{c}{a+b}< \dfrac{c+c}{a+b+c}=\dfrac{2c}{a+b+c}\)

Cộng theo vế các đẳng thức trên ta được :

\(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}< \dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)\(\Rightarrow\)\(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}< 2\)

Vậy a, b, c là độ dài ba cạnh của tam giác thì \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}< 2\)

Chúc bạn học tốt ~