Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a+b+c=0 => \(a+b=-c\Rightarrow\left(a+b\right)^3=-c^3\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3ab\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\)
\(a^6+b^6+c^6=\left(a^3\right)^2+\left(b^3\right)^2+\left(c^3\right)^2=\left(a^3+b^3+c^3\right)^2-2\left(a^3b^3+b^3c^3+c^3a^3\right)\)
\(ab+bc+ca=0\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Do đó: \(a^6+b^6+c^6=\left(3abc\right)^2-2\cdot3a^2b^2c^2=3a^2b^2c^2\)
Vậy \(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=\frac{3a^2b^2c^2}{3abc}=abc\left(đpcm\right)\)
2a)với a,b,c là các số thực ta có
\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)
tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)
tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)
cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)
dấu "=" xảy ra khi và chỉ khi a=b=c
Ta có : a+b+c = 1 ==> a=1-b-c thay vào căn thức được :
\(\sqrt{\frac{\left(a+bc\right)\left(b+ca\right)}{c+ab}}=\sqrt{\frac{\left(1-b-c+bc\right)\left(b+c-bc-c^2\right)}{c+b-b^2-bc}}=\sqrt{\frac{\left(1-b\right)\left(1-c\right)^2\left(b+c\right)}{\left(1-b\right)\left(b+c\right)}}\)
\(=\sqrt{\left(1-c\right)^2}=\left|1-c\right|=1-c=a+b\)(đpcm)
Từ a+b+c=0 => b+c=-a
Theo đề ra ta có a3 + b3 + c3 = 0
=> a3 + (b+c)(b2 - bc + c2 )=0
<=> a3- a[(b + c )2 -3bc]= 0
<=> a3- [( -a )2 - 3bc] = 0
<=> a3 - a3 +3bc = 0
<=> 3bc= 0
<=> a =0 hoặc b=0 hoặc c=0 ( đpcm)
cho mik điểm nha bạn ơiii
Ta có:\(ab^2+bc^2+ca^2-4abc=0\Leftrightarrow\frac{b}{c}+\frac{c}{a}+\frac{a}{b}=4\)
Áp dụng BĐT AM-GM ta có:
\(\frac{b}{c}+\frac{c}{a}\ge2\sqrt{\frac{b}{a}};\frac{c}{a}+\frac{a}{b}\ge2\sqrt{\frac{c}{b}};\frac{a}{b}+\frac{b}{c}\ge2\sqrt{\frac{a}{c}}\)
Cộng theo vế các BĐT trên ta được : \(\sqrt{\frac{b}{a}}+\sqrt{\frac{c}{b}}+\sqrt{\frac{a}{c}}\le4\)
Đẳng thức xảy ra khi và chỉ khi \(\frac{b}{c}=\frac{c}{a}=\frac{a}{b}=\frac{4}{3}\)( vô lý)
Vậy đẳng thức không thể xảy ra.
\(N=\Sigma\frac{3}{b+c}+\Sigma\frac{a^2}{b+c}\ge\Sigma\frac{3}{3-a}+\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\left(Svac\right)\)
\(=\Sigma\frac{3}{3-a}+\frac{3}{2}\)
Để C/m \(N\ge6\)thì \(\Sigma\frac{3}{3-a}\ge\frac{9}{2}\)
Áp dụng Svac \(\frac{3}{3-a}+\frac{3}{3-b}+\frac{3}{3-c}\ge\frac{\left(\sqrt{3}+\sqrt{3}+\sqrt{3}\right)^2}{3+3+3-\left(a+b+c\right)}=\frac{9}{2}\left(Q.E.D\right)\)
Dấu bằng tại a=b=c=1