K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2019

Ta có : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)

Ta có : \(\frac{a}{b}+\frac{b}{a}\ge2\)thật vậy :

Giả sử : \(a\ge b\)không làm mất tính tổng quát của bài toán :

\(\Rightarrow a=m+b\left(m\ge0\right)\)

Ta có : \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}=1+\frac{m}{b}+\frac{b}{b+m}\)

\(\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}=1+1=2\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)

Tương tự : \(\frac{b}{c}+\frac{c}{b}\ge2;\frac{a}{c}+\frac{c}{a}\ge2\)

\(\Rightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge3+2+2+2=9\left(đpcm\right)\)

23 tháng 1 2019

làm dài vậy??

Áp dụng BĐT cauchy cho 3 số ta được:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(a+b+c\ge\sqrt[3]{abc}\)

Nhân vế theo vế của 2 BĐT ta được:

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge9\sqrt[3]{\frac{abc}{abc}}=9\left(đpcm\right)\)

25 tháng 1 2018

Đề phải là : cmr : (a+b+c).(1/a + 1/b + 1/c) >= 9

Áp dụng bđt cosi cho lần lượt 3 số a,b,c > 0 và 3 số 1/a ; 1/b ; 1/c > 0 thì :

(a+b+c)(1/a + 1/b + 1/c)

>= \(3\sqrt[3]{a.b.c}\).  \(3\sqrt[3]{\frac{1}{a}.\frac{1}{b}.\frac{1}{c}}\) =  \(3\sqrt[3]{abc}\).  \(3\sqrt[3]{\frac{1}{abc}}\)=  \(9\sqrt[3]{abc.\frac{1}{abc}}\)=  9

=> đpcm

Dấu "=" xảy ra <=> a=b=c > 0

Tk mk nha

26 tháng 1 2018

Bạn giải là ý b), ý a) vẫn đúng đề

1 tháng 2 2020

Ta có :

\(VT=\frac{1}{2}\left[\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\right]\)

\(=\frac{1}{2}\left[\frac{\left(b-c\right)^2}{\left(a-b\right)\left(a-c\right)}+\frac{\left(a-c\right)^2}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}+\frac{\left(a-b\right)^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)

\(=\frac{1}{2}\left[\frac{\left(b-c\right)^2+\left(a-c\right)^2+\left(a-b\right)^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)

\(=\frac{1}{2}\left[\frac{b^2-2bc+c^2+a^2-2ac+c^2+a^2-2ab+b^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)

\(=\frac{1}{2}\left[\frac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)

\(=\frac{a^2+b^2+c^2-ab-bc-ac}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)(1)

Lại có :

\(VP=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)

\(=\frac{\left(b-c\right)\left(a-c\right)+\left(a-b\right)\left(a-c\right)-\left(a-b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{ab-bc-ac+c^2+a^2-ac-ab+bc-ab+ac+b^2-bc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\frac{a^2+b^2+c^2-ab-ac-bc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)(2)

Từ (1) và (2) \(\RightarrowĐPCM\)

28 tháng 1 2017

Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\left(a+b+c>0\right)\)

\(\Rightarrow\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=2\)

\(\Rightarrow\left(\frac{b+c}{a}\right)^2=\left(\frac{c+a}{b}\right)^2=\left(\frac{a+b}{c}\right)^2=2^2\)

\(\Rightarrow\frac{\left(b+c\right)^2}{a^2}=\frac{\left(c+a\right)^2}{b^2}=\frac{\left(a+b\right)^2}{c^2}=4\)

\(\Rightarrow\frac{\left(a+b\right)^2}{c^2}+\frac{\left(c+a\right)^2}{b^2}+\frac{\left(b+c\right)^2}{a^2}=4+4+4=12\left(đpcm\right)\)

Vậy...

28 tháng 1 2017

cảm ơn bn !

bn biết lm bài này ko ?

lm luôn giúp mik vs !

link :https://hoc24.vn/hoi-dap/question/174562.html

27 tháng 11 2016

Gọi biểu thức\(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)là P.

Có hai trường hợp sau đây:

  • \(a+b+c\ne0\):

    \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

    \(\Rightarrow\hept{\begin{cases}a+b-c=c\Rightarrow a+b=2c\\b+c-a=a\Rightarrow b+c=2a\\a+c-b=b\Rightarrow a+c=2b\end{cases}}\)

    \(\Rightarrow P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)

  • \(a+b+c=0\)

    \(\Rightarrow a=-\left(b+c\right);b=-\left(a+c\right);c=-\left(a+b\right)\)

    \(\Rightarrow P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)=\left(\frac{a+b}{-\left(b+c\right)}\right)\left(\frac{a+c}{-\left(a+b\right)}\right)\left(\frac{b+c}{-\left(a+c\right)}\right)=\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{-\left(a+b\right)\left(b+c\right)\left(a+c\right)}=-1\)

Vậy \(P\in\left\{8;-1\right\}\)

27 tháng 11 2016

bạn cộng tất cả phân số ban đầu vs 2

sẽ đc là:a+b+c/c=a+b+c/a=a+b+c/b

rồi xét 2 trường hợp: a+b+ckhác 0 thì a=b=c nên a+b/a=2,a+c/c=2,c+b/c=2 hay 1+b/a=2,1+a/c=2,1+c/b=2

TH2:a+b+c=0 nên a+b=-c,a+c=-b,b+c=-a nên giá trị biểu thức phải tìm là -1(ở đây bạn phân tích biểu thức phải tìm ra rồi nhân các tử và mẫu vs nhau rồi rút gọn đi ra -1)

31 tháng 12 2016

Công dãy lại => hệ số : \(k=2014\)

Cách đơn giảii không hiệu quả, Thế lại=> a,b,c thay vào ra A