Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
minh nghi vay
Áp dụng BĐT cô si ta có :
ab+bc+ca≥33√ab.bc.ca=3ab+bc+ca≥3ab.bc.ca3=3
⇒BĐT⇒BĐTcần CMCM: 3>9a+b+c⇔a+b+c>33>9a+b+c⇔a+b+c>3
Mà a,b,c > 0 => abc > 0
⇒a+b+c≥33√abc≥3⇒a+b+c≥3abc3≥3
Dấu "=" xảy ra ⇔\hept{a=b=ca2=b2=c2=1⇔a=b=c=1
Từ \(a+b+ab=3\Rightarrow a+b=3-ab\ge3-\frac{\left(a+b\right)^2}{4}\)
\(\Rightarrow\left(a+b+6\right)\left(a+b-2\right)\ge0\Rightarrow a+b\ge2\)
Biến đổi bài toán như sau:
\(P=\frac{3a}{b+1}+\frac{3b}{a+1}+\frac{ab}{a+b}-a^2-b^2\le\frac{3}{2}\)
Tức là chứng minh \(\frac{3}{2}\) là GTLN của \(P\)
\(P=\frac{3\left(a^2+b^2\right)+3\left(a+b\right)}{ab+a+b+1}+\frac{3-a-b}{a+b}-\left(a+b\right)^2++2\left(3-a-b\right)\)
\(=\frac{3}{4}\left[3\left(a+b\right)^2-6\left(3-a-b\right)+3\left(a+b\right)\right]\)
\(+\frac{3}{a+b}-1-\left(a+b\right)^2+6-2\left(a+b\right)\)
Khảo sat đồ thì trên \(a+b\ge2\) tìm tìm được \(P_{Max}=\frac{3}{2}\)
P/s:giờ mk đi ngủ, mệt r` chỗ nào khó hiểu mai hỏi :D
ta có: \(VT=\frac{a\left(a+b+ab\right)}{b+1}+\frac{b\left(a+b+ab\right)}{a+1}+\frac{ab}{a+b}\)
\(=a^2+b^2+\frac{ab}{a+b}+\frac{ab}{a+1}+\frac{ab}{b+1}\)
cần cm \(\frac{ab}{a+b}+\frac{ab}{a+1}+\frac{ab}{b+1}\le\frac{3}{2}\)
theo giả thiết \(4=\left(a+1\right)\left(b+1\right)\le\frac{1}{4}\left(a+b+2\right)^2\)
\(\Leftrightarrow a+b\ge2\)
ta có: \(\frac{ab}{a+b}=\frac{ab+a+b}{a+b}-1=\frac{3}{a+b}\le\frac{3}{2}-1\)(*)
\(\frac{ab}{a+1}+\frac{ab}{b+1}\le\frac{1}{4}\left(b+ab\right)+\frac{1}{4}\left(a+ab\right)=\frac{1}{4}\left(3+ab\right)\)(**)
giờ cần tìm max ab.để ý rằng \(ab=ab+a+b-\left(a+b\right)=3-\left(a+b\right)\le3-2=1\)
khi đó \(\frac{ab}{a+b}+\frac{ab}{a+1}+\frac{ab}{b+1}\le\frac{3}{2}-1+\frac{1}{4}\left(3+1\right)=\frac{3}{2}\)(đpcm)
dấu = xảy ra khi a=b=1
\(\left(a+3b\right)\left(b+3a\right)\le\left(\frac{4a+4b}{2}\right)^2=\left(2a+2b\right)^2\)
=>\(\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\frac{1}{2}\left(2a+2b\right)=a+b\)
Mình làm phần dễ nhất rồi, còn lại của bạn đó ^^
Đặt \(x=a^3;y=b^3;z=c^3\), khi đó \(xyz=1\). Bất đẳng thức cần chứng minh trở thành:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{2\left(2+xy+yz+zx+x+y+z\right)}\)
Ta viết lại bất đẳng thức như sau:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{2\left(2+xy+yz+zx+x+y+z\right)}\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{2\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
Bình phương 2 vế ta được:
\(\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\ge8\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta được \(\left(x+y\right)^2\left(x+\frac{1}{y}\right)^2\ge x+1^4\)hay ta được bất đẳng thức:
\(\left(x+y\right)^2\left(x+xz\right)^2\ge\left(x+1\right)^4\Leftrightarrow x^2\left(x+y\right)^2\left(1+z\right)^2\ge\left(x+1\right)^4\)
Tương tự ta được các bất đẳng thức:
\(y^2\left(y+z\right)^2\left(1+x\right)^2\ge\left(y+1\right)^4;z^2\left(z+x\right)^2\left(1+y\right)^2\ge\left(z+1\right)^4\)
Nhân theo vế các bất đẳng thức trên, ta được:
\(x^2y^2z^2\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2\)
\(\ge\left(x+1\right)^4\left(y+1\right)^4\left(z+1\right)^4\)
Hay:
\(\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2\ge\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2\)
Mặt khác, ta lại có:
\(\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2\ge\left(1+x\right)\left(1+y\right)\left(1+z\right)\cdot8\sqrt{xyz}\)
\(=8\left(1+x\right)\left(1+y\right)\left(1+z\right)\)
Do đó ta được bất đẳng thức:
\(\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\ge8\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
Bất đẳng thức được chứng minh, dấu đẳng thức xảy ra khi \(a=b=c\)
Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập springtime ấy
Ta có:
\(\frac{2a^5+3b^5}{ab}\ge5a^3+10b^3-10ab^2\)
\(\Leftrightarrow\left(a-b\right)^4\left(2a+3b\right)\ge0\).Tương tự với 2 cái còn lại được:
\(\frac{2a^5+3b^5}{ab}+\frac{2b^5+3c^5}{cb}+\frac{2c^5+3a^5}{ab}\ge15\left(a^3+b^3+c^3\right)-10\left(ab^2+bc^2+ca^2\right)\)
=>Đpcm (vì ab2+bc2+ca2=3)
Dấu = khi a=b=c=1