Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\dfrac{1}{1794}\)>\(\dfrac{1}{1795^2}\)
\(\dfrac{1}{1794}\)>\(\dfrac{1}{1796^2}\)
\(\dfrac{1}{1794}\)>\(\dfrac{1}{1797^2}\)
.....................
\(\dfrac{1}{1794}\)>\(\dfrac{1}{2016^2}\)
\(\dfrac{1}{1794}\)>\(\dfrac{1}{2017^2}\)
\(\Leftrightarrow\)\(\dfrac{1}{1794}\)>\(\dfrac{1}{1795^2}\)+\(\dfrac{1}{1796^2}\)+\(\dfrac{1}{1797^2}\)+. . .+\(\dfrac{1}{2016^2}\)+\(\dfrac{1}{2017^2}\)
\(\frac{1}{1975^2}+\frac{1}{1976^2}+...+\frac{1}{2017^2}< \frac{1}{1974.1975}+\frac{1}{1975.1976}+...+\frac{1}{2016.2017}\)
\(=\frac{1}{1974}-\frac{1}{1975}+\frac{1}{1975}-\frac{1}{1976}+...+\frac{1}{2016}-\frac{1}{2017}=\frac{1}{1974}-\frac{1}{2017}< \frac{1}{1974}\)
khi Chia 2 lũy thừa cùng cơ số ta giữ nguyên cơ số rồi công số mũ, công thức\(x^m:x^n=x^{m-n}\left(x\ne0,m\ge n\right)\)
khi Nhân 2 lũy thừa cùng số mũ ta giữ nguyên số mũ rồi nhân hai cơ số, công thức\(n^x.m^x=\left(n.m\right)^x\)
khi Chia 2 lũy thừa cùng số mũ ta giữ nguyên số mũ rồi chia hai cơ số, công thức\(n^x:m^x=\left(n:m\right)^x,khi\left(n⋮m\right)\)
khi Lũy thừa cho 1 lũy thừa ta nhân 2 số mũ rồi giữ nguyên cơ số công thức\(\left(x^n\right)^m=x^{n.m}\)
Đặt A = 22 + 22 + 23 + ... + 21975
=> 2A = 23 + 23 + 24 + ... + 21976
=> 2A - A = ( 23 + 23 + 24 + ... + 21976 ) - ( 22 + 22 + 23 + ... + 21975 )
=> A = 23 + 21976 - 22 - 22
Đặt A = 22 + 22 + 23 + ... + 21975
=> 2A = 23 + 23 + 24 + ... + 21976
=> 2A - A = ( 23 + 23 + 24 + ... + 21976 ) - ( 22 + 22 + 23 + ... + 21975 )
=> A = 23 + 21976 - 22 - 22
Bài 1 :
a/ \(a^3.a^9=a^{3+9}=a^{12}\)
b/\(\left(a^5\right)^7=a^{5.7}=a^{35}\)
c/ \(\left(a^6\right).4.a^{12}=a^{24}.a^{12}.4=a^{24+12}.4=a^{36}.4\)
d/ \(\left(2^3\right)^5.\left(2^3\right)^3=2^{15}.2^9=2^{15+9}=2^{24}\)
e/ \(5^6:5^3+3^3.3^2\)
\(=5^3+3^5=125+243=368\)
i/ \(4.5^2-2.3^2\)
\(=2^2.5^2-2.3^2\)
\(=2^2.25-2^2.14\)
\(=2^2.\left(25-14\right)\)
\(=2^2.11\)
\(=4.11=44\)
\(3^5=3.3.3.3.3\)
\(6^2=6.6\)
\(5^4=5.5.5.5\)
\(2^2=2.2\)
\(7^3=7.7.7\)
cho mik đi
Bài 1:
\(\left(\frac{1}{2}\right)^{2n-1}=\frac{1}{8}\\ \left(\frac{1}{2}\right)^{2n-1}=\left(\frac{1}{2}\right)^3\\ 2n-1=3\\ 2n=3+1\\ 2n=4\\ n=4:2\\ n=2\)
Bài 2:
\(\frac{81}{625}=\left(\frac{3}{5}\right)^4=\left(\frac{9}{25}\right)^2\)
A.\(2^{1976}\)
Trả lời:
A
HT