K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2016

Đặt 19951995 = a = a1 + a2 + …+ an.

Gọi  =____ =_____ + a - a

           = (a3 - a1) + (a3 - a2) + …+ (a3 - an) + a

Mỗi dấu ngoặc đều chia hết cho 6 vì mỗi dấu ngoặc là tích của ba số tự nhiên liên tiếp. Chỉ cần tìm số dư khi chia a cho 6

1995 là số lẻ chia hết cho 3, nên a củng là số lẻ chia hết cho 3, do đó chia cho 6 dư 3

25 tháng 6 2017

Đặt  \(P=1995^{1995}=a_1+a_2+a_3+...+a_n\)  (với a1, a2, ..., an là các số tự nhiên và n là số tự nhiên khác 0)

và  \(S=a_1^3+a_2^3+a_3^3+a_n^3\)

Xét hiệu  

\(S-P=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+\left(a_3^3-a_3\right)+...+\left(a_n^3-a_n\right)\)

\(=\left(a_1-1\right)a_1\left(a_1+1\right)+\left(a_2-1\right)a_2\left(a_2+1\right)+\left(a_3-1\right)a_3\left(a_3+1\right)+...+\left(a_n-1\right)a_n\left(a_n+1\right)\)

Ta thấy mỗi số hạng của tổng trên là tích của 3 số tự nhiên liên tiếp nên tồn tại một số chia hết cho 3 và một số chia hết cho 2

=> Mỗi số hạng đều chia hết cho 6

=> \(\left(S-P\right)⋮6\)

Do đó muốn tìm số dư của S khi chia cho 6, ta chỉ cần tìm số dư của P khi chia cho 6

Lại có  \(P=1995^{1995}=\left(1995^3\right)^{665}\)    đồng dư với  \(3^{665}\)  (mod 6)

Mà  \(3^k\)  (với k là số tự nhiên khác 0) luôn chia 6 dư 3 => \(3^{665}\)  chia 6 dư 3

=> P chia 6 dư 3

=> S chia 6 dư 3.

p/s: Học toán với OnlineMath - Online Math có thể thêm kí hiệu đồng dư được không ạ?

2 tháng 3 2021

Học liệu của ĐH Sư phạm Hà Nội

24 tháng 8 2018

1.

Đặt \(1995^{1995}=a=a_1+a_2+a_3+...+a_n\)

Gọi \(S=a_1^3+a_2^3+...+a_n^3=a_1^3+a_2^3+...+a_n^3-a+a\)

\(S=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)+a\)

Vì mỗi dấu ngoặc đều chia hết cho 6 do là tích 3 số tự nhiên liên tiếp

\(\Rightarrow S\) chia 6 dư a

\(1995\equiv3\left(mod6\right)\Rightarrow1995^{1995}\equiv3\left(mod6\right)\)

Vậy S chia 6 dư 3

2.

\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}=\left(B\left(25\right)-1\right)^{10}=B\left(25\right)+1\)

Vì 2100 chẵn nên 3 chữ số tận cùng của nó chẵn nên có thể là 126; 376; 626; 876

Lại có 2100 chia hết cho 8 => ba chữ số tận cùng chi hết cho 8

=> Ba CTSC là 376

3.

\(22^{22}+55^{55}=\left(BS7+1\right)^{22}+\left(BS7-1\right)^{55}=BS7+1+BS7-1=BS7⋮7\)

\(3^{1993}=3\cdot\left(3^3\right)^{664}=3\cdot\left(BS7-1\right)^{664}=3\left(BS7+1\right)=BS7+3\) nên chia 7 dư 3

\(1992^{1993}+1994^{1995}=\left(BS7-3\right)^{1993}+\left(BS7-1\right)^{1995}=BS7-3^{1993}+BS7-1=BS7-\left(BS7+3\right)+BS7-1=BS7-4\) chia 7 dư 3

\(3^{2^{1930}}=3^{2860}=3\cdot\left(3^3\right)^{953}=3\cdot\left(BS7-1\right)^{953}=3\left(BS7-1\right)=BS7-3\) chia 7 dư 4

4.

\(2^{1994}=2^2\cdot\left(2^3\right)^{664}=4\left(BS7+1\right)^{664}=4\left(BS7+1\right)=BS7+4\) chia 7 dư 4

\(3^{1998}+5^{1998}=\left(3^3\right)^{666}+\left(5^2\right)^{999}=\left(BS7-1\right)^{666}+\left(BS7-1\right)^{999}=BS7+1+BS7-1=BS7⋮7\)

\(A=1^3+2^3+3^3+...+99^3=\left(1+2+...+99\right)^2=B^2⋮B\)

CM bằng quy nạp (có trên mạng)

2 tháng 10 2020

bạn ơi cho mình hỏi là vì sao 1995 chia 6 dư 3 thì 1995^1995 chia 6 cũng dư 3 vậy ạ? nếu đc thì bạn có thể chứng minh giúp mình t/c này với ạ

3 tháng 10 2016

bạn giải luôn đi

để mk tham khảo

Bài này của lp 8

mà mk mới hok lp 7

=> mk xem bn làm để năm sau mk hok cách làm

13 tháng 1 2019

Tớ nêu ý kiến =) bài chưa qua kiểm định nhé ^^

Lấy tổng lập phương 2018 số đó trừ đi P sẽ đc 1 hiệu chia hết cho 6

VD nhé : a1^3 - a1 = a1.(a1^2-1) = a1.(a1-1).(a1+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

Mấy cái còn lại cx tương tự như thế thì hiệu nhận đc đúng là chia hết cho 6 đúng ko?

Thế thì P chia 6 dư 5 rồi =D

18 tháng 10 2015

1998 khi viết thành tổng của 3 số tự nhiên thì sẽ có 1 số chẵn

Tổng lập phương của chúng là số chãn chia hết 3

do đó tổng lập phương của 3 số tự nhiên chia hết cho 6

18 tháng 10 2015

1998 khi viết thành tổng 3 số tự nhiên thì sẽ có ít nhất 1 số chẵn

Tổng lập phương của chúng là số chẵn và chia hết cho 3

Do đó tổng các lập phương của ba số tự nhiên đó chia hết cho 6

3 tháng 7 2017

3. 1998=a+b+c (a,b,c\(\in N\))

Xét a^3+b^3+c^3 - (a+b+c)=a(a-a)(a+1)+b(b-1)(b+1)+c(c-1)(c+1)

mà n(n-1)(n+1) luôn chia hết cho 6 với mọi số tự nhiên n

=>a^3+b^3+c^3 chia hết cho 6 (a+b+c chia hết cho 6)