Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sử dụng phương trình đường tròn : x2 - y2 - ax – 2by +c = 0
Đường tròn đi qua điểm A(1; 2):
12 + 22 – 2a -4b + c = 0 <=> 2a + 4b – c = 5
Đường tròn đi qua điểm B(5; 2):
52 + 22 – 10a -4b + c = 0 <=> 10a + 4b – c = 29
Đường tròn đi qua điểm C(1; -3):
12 + (-3)2 – 2a + 6b + c = 0 <=> 2a - 6b – c = 10
Để tìm a, b, c ta giải hệ:
Lấy (2) trừ cho (1) ta được phương trình: 8a = 24 => a = 3
Lấy (3) trừ cho (1) ta được phương trình: -10b = 5 => b = - 0,5
Thế a = 3 ; b = -0.5 vào (1) ta tính được c = -1
Ta được phương trình đường tròn đi qua ba điểm A, B, C là :
x2 + y2 - 6x + y - 1 = 0.
b) Tương tự ta tính được I(2; 1), R= 5
Phương trình đường tròn đi qua ba điểm M(-2; 4); N(5; 5); P(6; -2) là:
(x - 2)2 + (y – 1)2 = 25 <=> x2 - y2 - 4x – 2y - 20 = 0
Đường tròn (C) có tâm \(I\left(1;2\right)\) và có bán kính \(R=2\)
a: MN lớn nhất
=>MN là đường kính
=>Δ: y=ax+b đi qua A(3;0) và I(-1;2)
Ta có hệ pt:
3a+b=0 và -a+b=2
=>a=-1/2 và b=1/2
b: Kẻ IH vuông góc MN
MN nhỏ nhất khi H trùng với A
=>vecto IA=(4;-2)
Δ có phương trình là:
4(x-3)+(-2)(y-0)=0
=>4x-12-2y=0
a) Phương trình đường tròn (C) có tâm \(I\left( { - 4;2} \right)\) và bán kính \(R = 3\) là: \({\left( {x + 4} \right)^2} + {\left( {y - 2} \right)^2} = 9\).
b) Bán kính đường tròn là: \(R = PE = \sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( {4 + 2} \right)}^2}} = \sqrt {40} \)
Phương trình đường tròn là: \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 40\).
c) Bán kính đường tròn là: \(R = \frac{{\left| {3.5 + 4.\left( { - 1} \right) - 1} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{{10}}{5} = 2\)
Phương trình đường tròn là: \({\left( {x - 5} \right)^2} + {\left( {y + 1} \right)^2} = 4\)
d) Giả sử tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = ID \Leftrightarrow I{A^2} = I{B^2} = I{D^2}\)
Vì \(I{A^2} = I{B^2},I{B^2} = I{D^2}\) nên: \(\left\{ \begin{array}{l}{\left( { - 3 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( { - 2 - a} \right)^2} + {\left( { - 5 - b} \right)^2}\\{\left( { - 2 - a} \right)^2} + {\left( { - 5 - b} \right)^2} = {\left( {5 - a} \right)^2} + {\left( {2 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 1\end{array} \right.\)
=> \(I\left( {1; - 1} \right)\) và \(R = IA = \sqrt {{{\left( 4 \right)}^2} + {{\left( { - 3} \right)}^2}} = 5\)
Vậy phương trình đường tròn đi qua 3 điểm A,B, D là: \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 25\)
a) Đường tròn (C) tâm \(O\left( {0;0} \right)\), bán kính \(R = 4\) có phương trình là: \({x^2} + {y^2} = 16\)
b) Đường tròn (C) tâm \(I\left( {2; - 2} \right)\), bán kính \(R = 8\) có phương trình: \({\left( {x - 2} \right)^2} + {\left( {y + 2} \right)^2} = 64\)
c) Gọi M, N lần lượt là trung điểm của AB, AC ta có: \(M\left( {\frac{1}{2};\frac{5}{2}} \right),N\left( {\frac{5}{2};\frac{7}{2}} \right)\)
Đường trung trực \(\Delta \)của đoạn thẳng AB là đường thẳng đi qua M và nhận vt \(\overrightarrow {BA} = (1;3)\) làm vt pháp tuyến, nên có phương trình \(x + 3y - 8 = 0\)
Đường trung trực d của đoạn thẳng AC là đường thẳng đi qua N và nhận vt \(\overrightarrow {AC} = (3; - 1)\) làm vt pháp tuyến, nên có phương trình \(3x - y - 4 = 0\)
\(\Delta \) cắt d tại điểm \(I(2;2)\) cách đều ba điểm A, B, C suy ra đường tròn (C) cần tìm có tâm \(I(2;2)\) và có bán kính \(R = IA = \sqrt 5 \). Vậy (C) có phương trình: \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 5\)
Ta có tâm của đường tròn \(I(5;3)\)
Tiếp tuyến nhận vectơ \(\overrightarrow {IM} \) làm vectơ pháp tuyến nên ta có: \(\overrightarrow n = \overrightarrow {IM} = \left( {6;8} \right)\)
Điểm M nằm trên tiếp tuyến nên ta có phương trình:
\(6\left( {x - 11} \right) + 8\left( {y - 11} \right) = 0 \Leftrightarrow 3x + 4y - 77 = 0\)
Vậy phương trình tiếp tuyến của đường tròn \((C):{\left( {x - 5} \right)^2} + {\left( {y - 3} \right)^2} = 100\) tại điểm \(M(11;11)\) là \(3x + 4y - 77 = 0\)
Gọi \(d,\Delta \) lần lượt là đường trung trực của hai đoạn thẳng MN, NP. Đường thẳng d đi qua trung điểm I của đoạn MN và vuông góc với MN.
Ta có: \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_M} + {x_N}}}{2} = \frac{{4 + 2}}{2} = 3\\{y_I} = \frac{{{y_M} + {y_N}}}{2} = \frac{{ - 5 - 1}}{2} = - 3\end{array} \right. \Rightarrow I\left( {3;3} \right);\overrightarrow {MN} = \left( { - 2;4} \right) \Rightarrow \overrightarrow {{n_d}} = \frac{{ - 1}}{2}\overrightarrow {MN} = \left( {1; - 2} \right)\)
Phương trình tổng quát của \(d\) là: \(1\left( {x - 3} \right) - 2\left( {y + 3} \right) = 0 \Leftrightarrow x - 2y - 9 = 0\).
Tương tự, ta có phương trình đường thẳng \(\Delta \) là: \(x - 7y - 34 = 0\).
Gọi \(J\) là tâm đường tròn đi qua ba điểm M, N, P. Khi đó \(J = d \cap \Delta \), do đó tọa điểm \(J\) thỏa mãn hệ phương trình \(\left\{ \begin{array}{l}x - 7y - 34 = 0\\x - 2y - 9 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 1\\y = - 5\end{array} \right. \Rightarrow J\left( { - 1; - 5} \right)\)
Từ đó ta tìm được \(R = JM = 5\)
Vậy phương trình đường tròn \(\left( C \right)\) là: \({\left( {x + 1} \right)^2} + {\left( {y + 5} \right)^2} = 25\).
Cách 2:
Gọi phương trình đường tròn cần tìm là (C):\({x^2} + {y^2} + 2ax + 2by + c = 0\) \(\left( {{a^2} + {b^2} - c > 0} \right)\)
\(M\left( {4; - 5} \right),N\left( {2; - 1} \right),P\left( {3; - 8} \right)\) thuộc (C) nên ta có:
\(\left\{ \begin{array}{l}
16 + 25 + 8a - 10b + c = 0\\
4 + 1 + 4a - 2b + c = 0\\
9 + 64 + 6a - 16b + c = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
8a - 10b + c = - 41\\
4a - 2b + c = - 5\\
6a - 16b + c = - 73
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
a = 1\\
b = 5 \,\,\, \rm{(thỏa mãn)}\\
c = 1
\end{array} \right.\)
Vậy phương trình đường tròn đi qua 3 điểm M, N, P là: \({x^2} + {y^2} + 2x + 10y + 1 = 0\) hay \({\left( {x + 1} \right)^2} + {\left( {y + 5} \right)^2} = 25\).