Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I là giao điểm của d và P nên tọa độ của I sẽ là:
1+2t+2(1+2t)+2t+1=0 ⇔ t = -0,5
thay t=-0,5 vào d ta đc x=0; y=0; z=-1/2
=> I(0;0;-1/2)
Gọi tọa độ M là (x;y;z) :
\(\overrightarrow{IM}\) = (x;y;z+\(\dfrac{1}{2}\)) mà IM=9 ⇔ \(\sqrt{x^2+y^2+\left(z+\dfrac{1}{2}\right)^2}\)=9
⇔\(x^2+y^2+\left(z+\dfrac{1}{2}\right)^2=81\)
thay tọa độ x, y, z ở đường thẳng d vào ta đc:
\(\left(1+2t\right)^2+\left(1+2t\right)^2+\left(t+\dfrac{1}{2}\right)^2\)=81.
=> \(\left[{}\begin{matrix}t=2,5\\t=-3,5\end{matrix}\right.\)
thay 1 trong 2 giá trị của t vào phương trình đt d. tớ sẽ thay t=2.5
=> M(6;6;2,5)
\(d\left(M,\left(P\right)\right)=\dfrac{\left|6+12+5+1\right|}{3}\) = 8
câu B đúng
a. Mặt phẳng (P) có (3;-2;2) là 1 vtpt nên d nhận (3;-2;2) là 1 vtcp
Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+3t\\y=2-2t\\z=-1+2t\end{matrix}\right.\)
b. \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) ; \(\overrightarrow{n_{\left(P'\right)}}=\left(1;-1;1\right)\)
\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(P'\right)}}\right]=\left(2;0;-2\right)=2\left(1;0;-1\right)\)
\(\Rightarrow\) d nhận (1;0;-1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=1+t\\y=-2\\z=3-t\end{matrix}\right.\)
c. \(\overrightarrow{u_{\Delta}}=\left(3;2;1\right)\) ; \(\overrightarrow{u_{\Delta'}}=\left(1;3;-2\right)\)
\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{u_{\Delta'}}\right]=\left(-7;7;7\right)=7\left(-1;1;1\right)\)
Đường thẳng d nhận (-1;1;1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=-1-t\\y=1+t\\z=3+t\end{matrix}\right.\)
Chọn B
Δ có vectơ chỉ phương và đi qua A (1;1;-2) nên có phương trình:
Chọn A
Mặt phẳng (P) có vectơ pháp tuyến là n → =(1;1;1)
Gọi ∆ là đường thẳng cần tìm và
Ta có
Chọn B.
Đường thẳng d1 có vectơ chỉ phương
Đường thẳng d2 có vectơ chỉ phương
Vì ∆ vuông góc với d1;d2 nên 1 vecto chỉ phương của ∆ là:
Vậy phương trình tham số của ∆ là
Do \(\Delta\) đi qua A và vuông góc với d nên \(\Delta\) phải nằm trong mặt phẳng (P) đi qua A và vuông góc với d.
Mặt phẳng (P) nhận vecto \(\overrightarrow{u}=\left(2;-1;4\right)\) của d làm vecto pháp tuyến, đi qua A(-4;-2;4) có phương trình : \(2x-y+4z-10=0\)
Gọi M là giao điểm của d và (P) thì M(-3+2t;1-t;-1+4t) thuộc d và M thuộc \(\Delta\)