K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2016

a) \(x^2+10x+26+y^2+2y\)

\(=\left(x^2+10x+25\right)+\left(y^2+2y+1\right)\)

\(\left(x+5\right)^2+\left(y+1\right)^2\)

b) \(x^2-2xy+2y^2+2y+1\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)

\(=\left(x-y\right)^2+\left(y+1\right)^2\)

c) \(z^2-6z+13+t^2+4t\)

\(=\left(z^2-6x+9\right)+\left(t^2+4t+4\right)\)

\(=\left(z-3\right)^2+\left(t+2\right)^2\)

d) \(4x^2-2z^2-2xz-2z+1\)

\(=\left(4x^2-4xz+z^2\right)+\left(z^2-2z+1\right)\)

\(=\left(2x-z\right)^2+\left(z-1\right)^2\)

10 tháng 7 2019

https://hoc24.vn/hoi-dap/question/88502.html

=>VAO DAY THAM KHAO NHES Ẩn Danh

15 tháng 6 2015

a) \(\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x-y\right)^2+\left(y+1\right)^2\)

b) \(\left(z^2-6z+9\right)+\left(t^2+4t+4\right)=\left(z-3\right)^2+\left(t+2\right)^2\)

c) \(\left(4x^2-4xz+z^2\right)+\left(z^2-2z+1\right)=\left(4x-z\right)^2+\left(z-1\right)^2\)

3 tháng 9 2016

1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2

b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2

c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2

3 tháng 9 2016

2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16

= x2 + 2xy + y2 + 42 = (x + y)2 + 42

b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36

= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2

c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9

= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2

d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2

= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2

28 tháng 7 2015

 

a) x2+10x+26+y2+2y

=x2+10x+25+y2+2y+1

=(x+5)2+(y+1)2

 

b) z2-6z+5-t2-4t

=z2-6z+9-t2-4t-4

=(z-3)2-(t2+4t+4)

=(z-3)2-(t+2)2

 

c)x2-2xy+2y2+2y+1

=x2-2xy+y2+y2+2y+1

=(x-y)2+(y+1)2

 

d) 4x2-12x-y2+2y+8

=4x2-12x+9-y2+2y-1

=(2x-3)2-(y2-2y+1)

=(2x-3)2-(y-1)2

    

29 tháng 6 2018

bạn ơi , bạn lấy bài này ở đâu vậy bạn

22 tháng 8 2019

\(1.z^2-6z+5-t^2-4t\)

\(=\left(z^2-6z+9\right)-\left(t^2+4t+4\right)\)

\(=\left(z-3\right)^2-\left(t+2\right)^2\)

22 tháng 8 2019

\(3,x^2-2xy+2y^2+2y+1\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)

\(=\left(x-y\right)^2+\left(y+1\right)^2\)

11 tháng 8 2018

a) \(x^6-4=\left(x^3\right)^2-2^2=\left(x^3-2\right).\left(x^3+2\right)\)

b) \(-9x^2+1=1^2-\left(3x\right)^2=\left(1-3x\right).\left(1+3x\right)\)

c) \(x^{10}-9=\left(x^5\right)^2-3^2=\left(x^5-3\right).\left(x^5+3\right)\)

mk chỉ làm đk bài 1 thui ,thông cảm cho mk nha bạn

\(a;x^6-4=\left(x^3\right)^2-2^2=\left(x^3-2\right)\left(x^3+2\right)\)

\(b;-9x^2+1=1^2-3x^2=\left(1-3x\right).\left(1+3x\right)\)

\(c;x^{10}-9=\left(x^5\right)^2-3^2=\left(x^5-3\right).\left(x^5+3\right)\)

\(#LTH\)

9 tháng 7 2018

a,\(x^2-2xy+2y^2+2y+1=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)=\left(x-y\right)^2+\left(y+1\right)^2\)

b,\(4x^2-4x+y^2+2y+2=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)=\left(2x-1\right)^2+\left(y+1\right)^2\)

c, \(z^2-6z+5-t^2-4t=\left(z^2-6z+9\right)-\left(t^2-4t+4\right)=\left(z-9\right)^2-\left(t-2\right)^2\)

23 tháng 8 2017

1. Điền hạng tử thích hợp vào chố dấu * để mỗi đa thức sau trở thành bình phương của một tổng hoặc một hiệu.

a) 16x2 +  * .24xy + x

b) * - 42xy + 49y2

c) 25x+ * + 81

d) 64x2 - * +9

2. Viết mỗi bt sau về dạng tổng hoặc hiệu hai bình phương

a) x2 + 10x + 26 + y+ 2y

b) z2 - 6z + 5 - t2 - 4t

c) x2 - 2xy + 2y2 + 2y + 1

d) ( x + y + 4 )( x + y - 4 )

e) ( x + y - 6 )

23 tháng 8 2017

Bài 1: Đề như đã sửa thì cách giải như sau: 
Trong Tam giác ABC 
Có AM/AB = AN/AC 
Suy ra: MN // BC . 

Trong tam giác ABI 
có 
MK // BI do K thuộc MN 
Do đó : MK/BI =AM/AB (1) 

Tương tự trong tam giác AIC 
Có NK// IC nên NK/IC = AN/AC (2) 

Từ (1) (2) có NK/IC = MK/BI do AN/AC = AM/AB 
Lại có IC = IB ( t/c trung tuyến) 
nên NK = MK (ĐPCM) 

Bài 2: 
Bài này thứ tự câu hỏi hình như ngược mình giải lần lượt các câu b) d) c) a) 
Từ A kẻ đường cao AH ( H thuộc BC). 

b) Do tam giác ABC vuông tại A áp dụng pitago ta có 
BC=căn(AB mũ 2 + AC mũ 2)= 20cm 

d) Có S(ABC)= AB*AC/2= AH*BC/2 
Suy ra: AH= AB*AC/ BC = 12*16/20=9.6 cm 

c) Ap dung định lý cosin trong tam giác ABD và ADC ta lần lượt có đẳng thức: 

BD^2= AB^2 + AD^2 - 2*AB*AD* cos (45) 
DC^2= AC^2+ AD^2 - 2*AC*AD*cos(45) (2) 

Trừ vế với vế có: 
BD^2-DC^2=AB^2-AC^2- 2*AB*AD* cos (45)+2*AC*AD*cos(45) 
(BC-DC)^2-DC^2 = -112+4*Căn (2)* AD. 
400-40*DC= -112+................ 
Suy 128- 10*DC= Căn(2) * AD (3) 

Thay (3) v ào (2): rính được DC = 80/7 cm; 

BD= BC - DC= 60/7 cm; 


a) Ta có S(ABD)=AH*BD/2 
S(ADC)=AH*DC/2 
Suy ra: S(ABD)/S(ACD)= BD/DC = 60/80=3/4;