Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
\(=\frac{2^2-1^2}{\left(1.2\right)^2}+\frac{3^2-2^2}{\left(2.3\right)^2}+...+\frac{\left(n+1\right)^2-n^2}{\left[n\left(n+1\right)\right]^2}\)
\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{n^2}-\frac{1}{\left(n+1\right)^1}\)
\(=1-\frac{1}{n^2+2n+1}\)
\(=\frac{n^2+2n}{n^2+2n+1}\)
\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)
\(=1-\frac{1}{\left(n-1\right)^2}\)
\(=\frac{\left(n-1\right)^2-1}{\left(n-1\right)^2}\)
a) \(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{3}{16}\)
b) \(\frac{6^3+3.6^2+3^3}{-13}=\frac{2^3.3^3+3.2^2.3^2+3^3}{-13}=\frac{3^3.\left(2^3+2^2+1\right)}{-13}=-3^3\)
c) \(\frac{5^4.20^4}{25^5.4^5}=\frac{100^4}{100^5}=\frac{1}{100}\)
d) \(\frac{\left(5^4-5^3\right)^3}{125^4}=\frac{\left[5^3\left(5-1\right)\right]^3}{\left(5^3\right)^4}=\frac{5^9.4^3}{5^{12}}=\frac{4^3}{5^3}\)
\(a)12^8\cdot9^{12}\)
\(=\left(2^2\cdot3\right)^8\cdot\left(3^2\right)^{12}\)
\(=\left(2^2\right)^8\cdot3^8\cdot3^{24}\)
\(=2^{16}\cdot3^{32}\)
\(=2^{16}\cdot\left(3^2\right)^{16}\)
\(=2^{16}\cdot9^{16}\)
\(=\left(2\cdot9\right)^{16}\)
\(=18^{16}\)
Ta có: x4 \(\ge\)0 \(\forall\)x
=> x4 + 5 \(\ge\)5 \(\forall\)x
=> (x4 + 5)2 \(\ge\)25 \(\forall\)x
Dấu "=" xảy ra <=> x = 0
Vậy Min của A = 25 tại x = 0
\(A=\left(x^4+5\right)^2=x^8+10x^4+25=x^4\left(x^4+10\right)+25\)
Vì \(x^4\ge0\)và \(x^4+10>0\)
\(\Rightarrow B_{min}=25\Leftrightarrow x^4\left(x^4+10\right)=0\)
\(\Rightarrow\hept{\begin{cases}x^4=0\\x^4+10=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varnothing\end{cases}}}\)
\(KL:B_{min}=25\Leftrightarrow x=0\)
Ta có : \(5x^2y.\left(-2x^3y^2\right)=-10x^5y^3\) (nhân đơn thức với đơn thức )
a) -x2+2x-5 = -( x2-2x+5) = - (x2-2x+1+4) = - (x-1)2 -4
Do - (x-1)2 bé hơn hoặc bằng 0 => (x-1)2- 4 <0 => -x2+2x-5 luôn đạt giá trị âm
\(A=\frac{5^7.4^2.2^5}{5^5}=5^2.4^2.2^5=2^9.5^2\)