Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2.\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right)\)
= \(\left(6+2\right)\left(3^2+1\right)\left(3^4+1\right)\)
= \(\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\)
= \(\left(3^4-1\right)\left(3^4+1\right)\)
= \(3^8-1\)
Chúc bạn học tốt !!!
\(S=1^3+2^3+3^3+...+n^3=\left(1+2+3+...+n\right)^2\)
\(=\left[\dfrac{n\left(n+1\right)}{2}\right]^2=\dfrac{n^2\cdot\left(n+1\right)^2}{4}\)
a) (x + 3)2 - 2(x + 3)(x - 2) + (x - 2)2
= (x + 3 - x + 2)2 = 52 = 25
b) (2x + 5)2 + 2(2x + 5)(3x - 1) + (3x - 1)2
= (2x + 5 + 3x - 1)2 = (5x + 4)2
1) \(\left(3x-2\right)^2=9x^2-12x+4\)
\(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2=\dfrac{1}{4}x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\)
\(\left(a+b\sqrt{3}\right)^2=a^2+2\sqrt{3}ab+3b^2\)
2) \(4a^2+4a+1=\left(2a+1\right)^2\)
\(9x^2-6x+1=\left(3x-1\right)^2\)
\(\dfrac{1}{4}x^2-\dfrac{1}{3}xy+\dfrac{1}{9}y^2=\left(\dfrac{1}{2}x-\dfrac{1}{3}y\right)^2\)
a) 16x2 - ( x2 + 4 )2
= ( 4x )2 - ( x2 + 4 )2
= [ 4x - ( x2 + 4 ) ][ 4x + ( x2 + 4 ) ]
= ( -x2 + 4x - 4 )( x2 + 4x + 4 )
= [ -( x2 - 4x + 4 ) ]( x + 2 )2
= [ -( x - 2 )2 ]( x + 2 )2
b) ( x + y )3 + ( x - y )3
= [ ( x + y ) + ( x - y ) ][ ( x + y )2 - ( x + y )( x - y ) + ( x - y )2 ]
= ( x + y + x - y )[ x2 + 2xy + y2 - ( x2 - y2 ) + x2 - 2xy + y2 ]
= 2x( 2x2 + 2y2 - x2 + y2
= 2x( x2 + 3y2 )
\(a,\left(2x+y+3\right)^2=4x^2+y^2+9+4xy+12x+6y\)
\(b,\left(x-2y+1\right)^2=x^2+4y^2+1-4xy+2x-4y\)
\(c,\left(x^2-2xy^2-3\right)^2=x^4+2x^2y^4+9-4x^3y^2-6x^2+12xy^2\)
\(\left(x-1\right)-\left(x-2\right)\left(x+2\right)\)
\(=\left(x-1\right)-\left(x^2-2^2\right)\)
\(=\left(x-1\right)-x^2+2^2\)
\(=x-1-x^2+2^2\)
\(=x-x^2+\left(2-1\right)\left(2+1\right)\)
\(=x-x^2+3\)
a/ (x-1)2-(x-2)(x+2)
=(x-1)-(x2-22)
=(x-1)-x2-22
=x-x2 +(2-1)(2+1)
=x-x2+3
Bài 2:
\(=\left(x-1\right)^3-3\left(x-1\right)^2\cdot\left(x+1\right)+3\left(x-1\right)\cdot\left(x+1\right)^2-\left(x+1\right)^3\)
\(=\left(x-1-x-1\right)^3=\left(-2\right)^3=-8\)
\(2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\)
\(=\left(6+2\right)\left(3^2+1\right)\left(3^4+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\)
\(=3^8-1\)
cảm ơn bn