Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left[\dfrac{1}{100}-1^2\right]\left[\dfrac{1}{100}-\left(\dfrac{1}{2}\right)^2\right]\cdot...\cdot\left[\dfrac{1}{100}-\left(\dfrac{1}{10}\right)^2\right]\cdot...\cdot\left[\dfrac{1}{100}-\left(\dfrac{1}{120}\right)^2\right]\)
\(=\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}-\dfrac{1}{4}\right)\cdot...\cdot\left(\dfrac{1}{100}-\dfrac{1}{100}\right)\cdot...\cdot\left(\dfrac{1}{100}-\dfrac{1}{14400}\right)\)
=0
mk ko chép đề mà tách luôn nha
M = x2x2 + x2x2 + x2y2 + x2y2 + x2y2 + y2y2 + y2
= ( x2x2 + x2y2 ) + ( x2x2 + x2y2 ) + ( x2y2 + y2y2 ) + y2
= x2( x2 + y2 ) + x2( x2 + y2 ) + y2( x2 + y2 ) + y2
= ( x2 + y2 ) (x2 + x2 + y2 ) + y2
= 1( x2 + 1) + y2
= x2 + y2 +1 = 2
ta có : \(\left(x-3\right)^{x+2}-\left(x-3\right)^{x+8}=0\)
\(\Rightarrow\left(x-3\right)^{x+2}-\left(x-3\right)^{x+2+6}=0\)
\(\Rightarrow\left(x-3\right)^{x+2}-\left(x-3\right)^{x+2}.\left(x-3\right)^6=0\)
\(\Rightarrow\left(x-3\right)^{x+2}.[1-\left(x-3\right)^6]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^{x+2}=0\\1-\left(x-3\right)^6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\\left(x-3\right)^6=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x-3=1\\x-3=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=4\\x=2\end{matrix}\right.\)
Cái câu hỏi bn để ở trước câu này mk có thể làm dc, nhưng mik thấy làm nhiều lần rồi ngán nên ko trả lời nữa (lười chính hiệu:))))
P=x3+x2y-2x2-xy-y2+3y+x+2017 với x+y=2
P=x3+x2y-2x2-xy-y2+2y+y+x+2017
\(P=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+2019\)
\(P=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)
có x+y=2 suy ra x+y-2=0
suy ra \(P=2019\)
\(A=\dfrac{4^2}{1.3}+\dfrac{4^2}{3.5}+\dfrac{4^2}{5.8}+...+\dfrac{4^2}{45.47}.\dfrac{1-3-5-...-49}{8}\)
\(A=4\left(\dfrac{4}{1.3}+\dfrac{4}{3.5}+\dfrac{4}{5.8}+...+\dfrac{4}{45.47}\right).\dfrac{1-3-5-...-49}{8}\)\(A=4\left[2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{45}-\dfrac{1}{47}\right)\right].\dfrac{1-3-5-...-49}{8}\)\(A=8\left(1-\dfrac{1}{47}\right).\dfrac{1-3-5-...-49}{8}\)
\(A=8\left(1-\dfrac{1}{47}\right).\dfrac{-623}{8}\)
\(A=\dfrac{368}{47}.\dfrac{-623}{8}=\dfrac{-28658}{47}\)
\(3x^2y^4\)-\(5xy^3\)-\(\dfrac{3}{2}x^2y^4\)+\(3xy^3\)+\(2xy^3\)+1=1,5\(x^2y^4\)+1>0
1. a, Ta có: \(2^{24}=2^{3^8}=8^8\)
Lại có: \(3^{16}=3^{2^8}=9^8\)
Vì \(8^8< 9^8\Rightarrow2^{24}< 3^{16}\)
b, Ta có: \(5^{300}=5^{3^{100}}=125^{100}\)
Lại có: \(3^{500}=3^{5^{100}}=243^{100}\)
Vì \(125^{100}< 243^{100}\Rightarrow5^{300}< 3^{500}\)
c, Ta có: \(2^{700}=2^{7^{100}}=128^{100}\)
Lại có: \(5^{300}=5^{3^{100}}=125^{100}\)
Vì \(128^{100}>125^{100}\Rightarrow2^{700}>5^{300}\)
d, Ta có: \(2^{400}=2^{2^{200}}=4^{200}\)
\(\Rightarrow2^{400}=4^{200}\)
e, Ta có: \(99^{20}=99^{2^{10}}=9801^{10}\)
Vì \(9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
Bài 1:
a) Ta có: 224 = (23)8 = 88 ; 316 = (32)8 = 98
Vì 8 < 9 nên 88 < 98
Vậy 224 < 316.
b) Ta có: 5300 = (53)100 =125100 ; 3500 = (35)100 = 243100
Vì 125 < 243 nên 125100 < 243100
Vậy 5300 < 3500.
c) Ta có: 2700 = (27)100 = 128100; 5300 = (53)100 = 125100
Vì 128 > 125 nên 128100 > 125100
Vậy 2700 > 5300.
d) (làm tương tự)
Vậy 2400 = 4200.
e) (tương tự)
Vậy 9920 < 999910.
f) Ta có: 321 = 320. 3 = 910. 3 ; 231 = 230. 3 = 810. 2
Vì 910 > 810 ; 3 > 2
Nên 910. 3 > 810. 2
Vậy 321 > 231.
Bài 2: phương trình dễ ợt :v
\(a,4.2^5:\left(2^3\cdot\dfrac{1}{16}\right)\\ =4.2^5:\left(2^3\cdot\dfrac{1}{2^4}\right)\\ =2^2.2^5:\dfrac{1}{2}\\ =2^7:\dfrac{1}{2}=2^7.2=2^8\)
\(b,3^2.2^5\left(\dfrac{2}{3}\right)^2\\ =\left(3\cdot\dfrac{2}{3}\right)^2.2^5\\ =2^2.2^5=2^7\)
\(c,\left(\dfrac{1}{3}\right)^2\cdot\dfrac{1}{3}.9^2\\ =\left(\dfrac{1}{3}\right)^3.3^4\\ =\left(\dfrac{1}{3}\right)^3.3^3.3\\ =\left(\dfrac{1}{3}.3\right)^3.3\\ =1^3.3=1.3\\ =3=3^1\)
a) \(4.2^5:\left(2^3\dfrac{1}{16}\right)\) \(=2^2.2^5:2^3:\dfrac{1}{16}\)
\(=2^7:2^3.16\)
\(= 2^4 . 2^4 = 2^8\)
b) \(3^2.2^5.\left(\dfrac{2}{3}\right)^2\) \(=3^2.2^5\)\(.\dfrac{2^2}{3^2}\)
\(=2^5.2^2=2^7\)
c) \(\left(\dfrac{1}{3}\right)^2.\) \(\dfrac{1}{3}.9^2\) \(=\left(\dfrac{1}{3}\right)^3.\left(3^2\right)^2\)
\(=\dfrac{1^3}{3^3}.3^4\)
\(=1^3.3\) \(= 3^1\)
HỌC TỐT NGHEN ~~~